ABOUT THE BOOK
This text-book along with its companion volume II is designed to cover the entire syllabi of the subject of Thermal Engineering, which is inherent in the study of engineering students.

The entire matter of the book is most comprehensive and presented in lucid language, with number of solved examples, neatly drawn sketches, so that the reader can understand the fundamentals of the subject easily. Number of exercises are given at end of appropriate sections as well as at the end of chapters. Exercises, subjective questions, objective type multiple choice questions are also included at the end of chapters.

The book has Sixteen chapters. The key feature of the book are:
Chapter 1 and 2 deals with Applied Thermodynamics
Chapter 3 deals with Steam and Steam Cycles
Chapter 4 to 6 contains Boilers
Chapter 7 and 8 deals with Fuel and Draught
Chapter 9 consist of the study of Steam Engine and Testing
Chapter 10 and 11 deals with Steam Nozzle and Turbine
Chapter 12 discussing topic on Condenser
Chapter 13 and 14 contains topics on I. C. Engines Theory and Testing
Chapter 15 Gas Turbine
Chapter 16 Air Pollution and Control.

The book within its 928 pages it comprise the following

* 546 Self-Illustrative neatly drawn sketches
* 43 Useful tables
* 293 Solved Examples
* 500 Objective Type Multiple Choice Questions
* 905 Exercises and Subjective Questions

It is hoped that this book will satisfy the need of the Mechanical Engineering students preparing for the B.Tech/B.E. examinations of almost all the Indian Universities, Diploma examinations conducted by various Boards of Technical Education, Certificate courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E. and other similar competitive and professional Examinations. It should also be of an immense help to the practising Engineers.
THERMAL ENGINEERING VOL. I

DETAILED CONTENTS

Chapter 1: INTRODUCTION
- 1-1. Thermal engineering
- 1-2. Areas of thermal engineering
- 1-2-1. Heat engines
- 1-2-2. Energy sources
- 1-2-3. Refrigeration and air-conditioning
- 1-2-4. Heat and mass transfer
- 1-2-5. Fuel and combustion system
- 1-2-6. Compressor and blowers
- 1-2-7. Cryogenics
- 1-2-8. Jet Propulsion
- 1-3. Engineering thermodynamics
- 1-4. Working fluids and thermodynamic system
- 1-5. Thermodynamic state and thermodynamic process
- 1-6. System of units
- 1-7. Units of length, area and volume
- 1-8. Specific volume
- 1-9. Units of mass
- 1-10. Units of force
- 1-11. Units of work and power
- 1-12. Units of energy
- 1-13. Measurements of properties of fluid
- 1-13-1. Pressure
- 1-13-2. Temperature
- 1-14. Zeroth law of thermodynamics
- 1-15. Temperature measurement
- 1-16. Pyrometers
- 1-16-1. Thermo-electric pyrometer
- 1-16-2. Radiation pyrometer
- 1-16-3. Optical pyrometer
- 1-16-4. Pyrometric cone or Seger cone pyrometer
- 1-17. Absolute temperature scale and absolute zero
- 1-18. NTP (normal temperature pressure) and STP (standard temperature pressure) conditions
- 1-19. Volume
- 1-20. Work
- 1-21. Heat
- 1-22. Properties of substances
- 1-23. Objective questions

Chapter 2: THERMODYNAMIC PROCESSES AND CYCLES
- 2-1. Perfect gas
- 2-2. Vapour
- 2-3. Boyle’s law
- 2-4. Charles’ law
- 2-5. Combination of laws of Boyle and Charles
- 2-6. Vander-Waal’s equation
- 2-7. Units of R
- 2-8. Universal gas constant
- 2-9. Avogadro’s law
- 2-10. Enthalpy
- 2-11. Entropy
- 2-12. Intensive and extensive properties
- 2-13. Thermodynamic system
- 2-14. Law of conservation of energy
- 2-15. First law of thermodynamics
- 2-16. Concepts of the second law of thermodynamics
- 2-16-1. Kelvin-Plank statement
- 2-16-2. Clausius statement
- 2-17. Specific heats of a gas
- 2-18. Ratio of specific heats
- 2-19. Relation between the two specific heats of a gas and the specific gas constant
- 2-20. Expansion and compression of gases
- 2-21. Point and path functions
- 2-22. Process
- 2-23. Constant volume process
- 2-24. Constant pressure process
- 2-25. Isothermal process
- 2-26. Isentropic process
- 2-27. Polytropic process
- 2-28. Determination of the index of expansion or compression
- 2-29. Comparison of work done by a gas during expansion for various processes
- 2-30. Mean effective pressure
- 2-31. Summary of equations for gas processes
- 2-32. Other important processes
- 2-32-1. Hyperbolic expansion
- 2-32-2. Free expansion
- 2-32-3. Throttling process
- 2-33. Gas tables
- 2-34. Approximation for heat absorbed
- 2-35. Typical examples
- 2-36. Reversibility
- 2-37. Air standard cydes
- 2-38. Heat machine
- 2-39. Useful work
- 2-40. Efficiency of cycle
- 2-41. Air standard efficiency of cycle
- 2-42. Assumptions in thermodynamic cycles
- 2-43. Thermodynamic cycles
- 2-44. Carnot cycle
- 2-45. Otto cycle
- 2-46. Mean effective pressure
- 2-47. Diesel cycle
- 2-48. Dual combustion cycle
- 2-49. Stirling cycle
- 2-50. Ericsson cycle
- 2-51. Brayton cycle
- 2-52. Comparison of ideal cycles
- 2-53. Reversed Brayton cycle (Bell-Coleman cycle)
- 2-54. Coefficient of performance (COP) flow processes
- 2-55. Flow processes
- 2-56. Steady flow energy equation
- 2-57. Control volume and flow work
- 2-58. Flow work of steady flow system
- 2-59. Applications of steady-flow energy equation

Chapter 3: PROPERTIES OF STEAM AND STEAM CYCLE
- 3-1. Vapour and steam
- 3-2. Conservation of form
- 3-3. Phase diagram
- 3-4. Effect of pressure on the boiling point of water
- 3-5. Temperature-pressure curve for steam
- 3-6. Generation of one kg of steam at a given pressure from water initially at 0°C
- 3-7. Conditions of steam
- 3-8. Saturated steam
- 3-9. Dry saturated steam and wet steam
- 3-10. Superheated steam
- 3-11. Supersaturated steam
- 3-12. Properties of steam
- 3-13. Dryness fraction of saturated steam
- 3-14. Use of steam tables
- 3-15. Sensible heat
- 3-16. Latent heat of vaporization
- 3-17. Enthalpy of wet steam
- 3-18. Enthalpy of superheated steam
- 3-19. Specific volume of steam
- 3-20. Internal energy of steam
- 3-21. Entropy of vapours
Chapter 4 STEAM BOILERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1.</td>
<td>Functions of boiler</td>
</tr>
<tr>
<td>4-2.</td>
<td>Classification of boilers</td>
</tr>
<tr>
<td>4-3.</td>
<td>Terms commonly employed in connection with boilers</td>
</tr>
<tr>
<td>4-4.</td>
<td>Lancashire boiler</td>
</tr>
<tr>
<td>4-4.1</td>
<td>Construction of Lancashire boilers</td>
</tr>
<tr>
<td>4-5.</td>
<td>Cornish boiler</td>
</tr>
<tr>
<td>4-6.</td>
<td>Multi-tubular fire tube boilers</td>
</tr>
<tr>
<td>4-7.</td>
<td>Horizontal return tubular boilers</td>
</tr>
<tr>
<td>4-8.</td>
<td>Locomotive boiler</td>
</tr>
<tr>
<td>4-9.</td>
<td>Vertical boilers</td>
</tr>
<tr>
<td>4-10.</td>
<td>Cochran boiler</td>
</tr>
<tr>
<td>4-10.1</td>
<td>Construction of Cochran boiler</td>
</tr>
<tr>
<td>4-11.</td>
<td>Scotch Marine fire-tube boiler</td>
</tr>
<tr>
<td>4-11.1</td>
<td>Construction of Scotch Marine fire-tube boiler</td>
</tr>
<tr>
<td>4-12.</td>
<td>Water tube boilers</td>
</tr>
<tr>
<td>4-13.</td>
<td>Babcock and Wilcox water tube boiler</td>
</tr>
<tr>
<td>4-13.1</td>
<td>Construction of Babcock and Wilcox type boiler</td>
</tr>
<tr>
<td>4-13.2</td>
<td>Settings for the Babcock and Wilcox boiler</td>
</tr>
<tr>
<td>4-14.</td>
<td>Stirling boiler (Bent tube type water tube boiler)</td>
</tr>
<tr>
<td>4-15.</td>
<td>Integral furnace boiler</td>
</tr>
<tr>
<td>4-16.</td>
<td>Waste heat boilers</td>
</tr>
<tr>
<td>4-17.</td>
<td>Super critical boilers</td>
</tr>
<tr>
<td>4-18.</td>
<td>Boiler specifications</td>
</tr>
<tr>
<td>4-19.</td>
<td>Fluidized bed combustions boilers (FBC)</td>
</tr>
<tr>
<td>4-19.1</td>
<td>Pulverized coal firing system</td>
</tr>
<tr>
<td>4-19.2</td>
<td>Pulverized fuel</td>
</tr>
<tr>
<td>4-19.3</td>
<td>Advantages of pulverized fuels</td>
</tr>
<tr>
<td>4-19.4</td>
<td>Disadvantages of stoker firing system</td>
</tr>
<tr>
<td>4-19.5</td>
<td>Fluidized bed combustion</td>
</tr>
<tr>
<td>4-19.6</td>
<td>Advantages of FBC boilers</td>
</tr>
<tr>
<td>4-19.7</td>
<td>Classification of fluidized bed combustion (FBC) boilers</td>
</tr>
<tr>
<td>4-20.</td>
<td>Thermal efficiency of FBC boiler</td>
</tr>
<tr>
<td>4-20.1</td>
<td>Unburnt fuel in flue gases</td>
</tr>
<tr>
<td>4-20.2</td>
<td>Sensible heat in flue gases</td>
</tr>
<tr>
<td>4-20.3</td>
<td>Surface radiation losses</td>
</tr>
<tr>
<td>4-21.</td>
<td>Pulverized fuel handling systems</td>
</tr>
<tr>
<td>4-21.1</td>
<td>Unit system</td>
</tr>
<tr>
<td>4-21.2</td>
<td>Central or bin system</td>
</tr>
<tr>
<td>4-22.</td>
<td>Pulverized fuel burners</td>
</tr>
<tr>
<td>4-22.1</td>
<td>Long flame or U-flame or streamlined burners</td>
</tr>
<tr>
<td>4-22.2</td>
<td>Short flame or turbulent burner</td>
</tr>
<tr>
<td>4-22.3</td>
<td>Tangential burners</td>
</tr>
<tr>
<td>4-23.</td>
<td>Modern boilers</td>
</tr>
<tr>
<td>4-23.1</td>
<td>La Mont boiler</td>
</tr>
<tr>
<td>4-23.2</td>
<td>Benson boiler</td>
</tr>
<tr>
<td>4-23.3</td>
<td>Loeffler boiler</td>
</tr>
</tbody>
</table>

Chapter 5 BOILER MOUNTINGS AND ACCESSORIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1.</td>
<td>Boiler mountings</td>
</tr>
<tr>
<td>5-2.</td>
<td>Safety valves</td>
</tr>
<tr>
<td>5-2.1</td>
<td>Dead weight safety valve</td>
</tr>
<tr>
<td>5-2.2</td>
<td>Spring loaded safety valve</td>
</tr>
<tr>
<td>5-2.3</td>
<td>Lever loaded safety valve</td>
</tr>
<tr>
<td>5-2.4</td>
<td>High steam and low water safety valve</td>
</tr>
<tr>
<td>5-3.</td>
<td>Water level indicators</td>
</tr>
<tr>
<td>5-4.</td>
<td>Pressure gauge</td>
</tr>
<tr>
<td>5-5.</td>
<td>Attachment for inspector’s test gauge</td>
</tr>
<tr>
<td>5-6.</td>
<td>Steam stop valve</td>
</tr>
<tr>
<td>5-7.</td>
<td>Feed check valve</td>
</tr>
<tr>
<td>5-8.</td>
<td>Blow-off cock</td>
</tr>
<tr>
<td>5-9.</td>
<td>Manhole</td>
</tr>
<tr>
<td>5-10.</td>
<td>Fusible plug</td>
</tr>
<tr>
<td>5-11.</td>
<td>Boiler accessories</td>
</tr>
<tr>
<td>5-12.</td>
<td>Economizers</td>
</tr>
<tr>
<td>5-13.</td>
<td>Air pre-heaters</td>
</tr>
<tr>
<td>5-14.</td>
<td>Superheaters</td>
</tr>
<tr>
<td>5-14.1</td>
<td>Methods of superheating steam</td>
</tr>
<tr>
<td>5-14.2</td>
<td>Methods of control of superheat</td>
</tr>
<tr>
<td>5-14.3</td>
<td>Smooth tube hairpin type superheater</td>
</tr>
<tr>
<td>5-14.4</td>
<td>Multiple loop superheaters</td>
</tr>
<tr>
<td>5-15.</td>
<td>Feed pumps</td>
</tr>
<tr>
<td>5-15.1</td>
<td>Duplex feed pump</td>
</tr>
<tr>
<td>5-16.</td>
<td>Steam drier or separator</td>
</tr>
<tr>
<td>5-17.</td>
<td>Steam trap</td>
</tr>
<tr>
<td>5-17.1</td>
<td>Expansion trap</td>
</tr>
<tr>
<td>5-17.2</td>
<td>Bucket or float steam trap</td>
</tr>
<tr>
<td>5-18.</td>
<td>Injectors</td>
</tr>
<tr>
<td>5-19.</td>
<td>Pressure reducing valve</td>
</tr>
</tbody>
</table>

Chapter 6 TESTING AND PERFORMANCE OF BOILER

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1.</td>
<td>Feed water</td>
</tr>
<tr>
<td>6-2.</td>
<td>Steam</td>
</tr>
<tr>
<td>6-3.</td>
<td>Fuel</td>
</tr>
<tr>
<td>6-4.</td>
<td>Duration of boiler test</td>
</tr>
<tr>
<td>6-5.</td>
<td>Flue gas sampling</td>
</tr>
<tr>
<td>6-6.</td>
<td>Flue gas temperature measurement</td>
</tr>
<tr>
<td>6-7.</td>
<td>Air</td>
</tr>
<tr>
<td>6-8.</td>
<td>Draught</td>
</tr>
<tr>
<td>6-9.</td>
<td>External heat losses from boiler and brick work</td>
</tr>
<tr>
<td>6-10.</td>
<td>Auxiliary Plant</td>
</tr>
<tr>
<td>6-11.</td>
<td>Air Infiltration and by-passing</td>
</tr>
<tr>
<td>6-12.</td>
<td>Performance test</td>
</tr>
<tr>
<td>6-13.</td>
<td>Thermal efficiency of boiler</td>
</tr>
<tr>
<td>6-14.</td>
<td>Evaporation</td>
</tr>
<tr>
<td>6-15.</td>
<td>Evaporation ratio</td>
</tr>
<tr>
<td>6-16.</td>
<td>Boiler performance</td>
</tr>
<tr>
<td>6-17.</td>
<td>Equivalent evaporation</td>
</tr>
<tr>
<td>6-18.</td>
<td>Reference standards</td>
</tr>
<tr>
<td>6-19.</td>
<td>Direct method of testing</td>
</tr>
<tr>
<td>6-20.</td>
<td>Indirect method of testing</td>
</tr>
<tr>
<td>6-21.</td>
<td>Measurements required for direct method of testing</td>
</tr>
<tr>
<td>6-22.</td>
<td>Boiler efficiency</td>
</tr>
<tr>
<td>6-23.</td>
<td>Indirect method of testing</td>
</tr>
<tr>
<td>6-24.</td>
<td>Measurement of parameters</td>
</tr>
<tr>
<td>6-25.</td>
<td>Calculation of boiler efficiency by indirect method</td>
</tr>
<tr>
<td>6-26.</td>
<td>Heat losses in boiler</td>
</tr>
<tr>
<td>6-27.</td>
<td>Boiler heat balance</td>
</tr>
<tr>
<td>6-28.</td>
<td>Boiler trial</td>
</tr>
</tbody>
</table>
THERMAL ENGINEERING VOL. I
DETAILED CONTENTS

6-28-1. Objective of a boiler trial
6-28-2. Plant
6-28-3. Report sheet on boiler trial
6-28-4. Specimen set of calculations
6-28-5. Graphical representation of results
6-28-6. Conclusions and criticisms
6-29. Boiler house instruments
6-30. Boiler house records
6-31. Typical examples

Objective questions

Chapter 7 DRAUGHT
7-1. Definition of draught
7-2. Classification of draught
7-3. Functions of a chimney
7-4. Natural draught
7-5. Determination of a height of a chimney to produce a given total static draught
7-6. Condition for maximum discharge through a chimney
7-7. Efficiency of a chimney
7-8. Draught losses
7-9. Artificial draught
7-10. Mechanical draught
7-11. Induced draught
7-12. Forced draught
7-13. Balanced draught
7-14. Power required to drive a fan
7-14-1. Power required for forced draught fan
7-14-2. Power required for an induced draught fan
7-15. Steam jet draught
7-16. Draught gauges

Objective questions

Chapter 8 FUELS AND COMBUSTION

FUELS
8-1. Classification of fuels
8-2. Solid fuels
8-3. Liquid fuels
8-4. Hydrocarbons
8-5. Gaseous fuels
8-6. Calorific value of fuels
8-7. Theoretical determination of calorific value of fuel
8-8. Calorific value of gaseous fuels
8-9. Experimental determination of calorific value of a fuel
8-10. Bomb calorimeter
8-11. Calorific value of liquid fuels
8-12. Calorific value of gaseous fuels
8-13. Gas calorimeters
8-13-1. Boy’s gas calorimeter
8-13-2. Junker’s gas calorimeter
8-14. Alternative fuels

COMBUSTION
8-15. Combustion of a fuel
8-15-1. Combustion of carbon
8-15-2. Combustion of carbon monoxide
8-15-4. Combustion of sulphur
8-16. Stoichiometric air–fuel ratio
8-17. Excess air
8-18. Determination of the flue gas analysis by mass and by volume
8-19. Determination of air supplied from volumetric analysis of flue gases
8-20. Determination of air leakage in boiler flues
8-21. Determination of the quantity of air supplied per kg of fuel from the analysis of flue gases when given by mass
8-22. Chemically correct air fuel ratio
8-22-1. Combustion of hydrogen
8-22-2. Combustion of carbon monoxide
8-22-3. Combustion of marsh gas
8-22-4. Excess air coefficient
8-23. Determination of flue gas analysis by volume and by mass in case of gaseous fuel
8-24. Determination of quantity of air supplied per m³ of gas from dry flue gas analysis in case of gaseous fuels
8-25. Calculation of heat losses
8-26. Exhaust gas analysis
8-26-1. Conventional method
8-26-2. Modern methods
8-27. Determination of air-fuel ratio with the help of dry flue gas analysis

Objective questions

Chapter 9 STEAM ENGINE AND TESTING
9-1. Introduction
9-2. Classification
9-3. Parts of a simple steam engine
9-4. Function of steam engine parts
9-5. Terms connected with steam engines
9-6. Working of a steam engine
9-7. Hypothetical indicator diagram
9-8. Construction of hypothetical indicator diagram
9-9. Determination of mean effective pressure
9-10. Work done in a steam engine cylinder during in hypothetical cycle
9-11. Actual indicator diagram and diagram factor
9-12. Determination of “theoretical indicated power”
9-13. Indicator
9-14. Steam consumption
9-15. Missing quantity
9-15-1. Causes of missing quantity
9-16. Efficiencies
9-17. Steam engine governors
9-18. Flywheel
9-19. Compound steam engines
9-20. Advantages of compounding of steam engine
9-21. Classification of compound engines
9-22. Terms used in connection with compound engines
9-23. Mean effective pressure referred to the L.P. cylinder
9-24. Estimation of cylinder dimensions (two cylinder compound engine)
9-25. Triple and quadruple expansion engines
9-26. Governing of compound engines
9-27. Uniflow engines
9-28. Purpose of engine trials
9-29. Trial procedure
9-30. The brake power and its measurements
9-30-1. Brake power
9-30-2. Measurement of brake power
9-31. Mechanical efficiency
9-32. Report on simple steam engine trial

Objective questions

Chapter 10 STEAM NOZZLE
10-1. Introduction
10-2. Types of nozzles
10-3. Mass flow rate
10-4. Flow of wet steam
10-5. Flow through steam nozzles
10-6. Velocity of steam leaving nozzle
10-7. Effect of friction in nozzle
10-8. Fruiction loss
10-9. Mass of steam discharged
10-10. Critical pressure ratio
10-11. Design of nozzle

Objective questions
Chapter 12 CONDENSER

12-1. Function of condenser
12-2. Type of condensers
12-3. Jet condensers
12-4. Surface condenser
12-5. Central flow type condenser
12-6. Evaporative condenser
12-7. Reasons for inefficiency in surface condenser
12-8. Air leakage in condenser
12-9. Vacuum
12-10. Effect of air in a condenser
12-11. Methods for obtaining maximum vacuum in condenser
12-12. Vacuum efficiency
12-13. Coefficient of performance or efficiency of surface condenser
12-14. Determination of circulating water required in condenser
12-15. Heat transmission in tubes
12-16. Cooling towers
12-17. Condenser efficiency
12-18. Air pump
12-18-1. Types of pump
12-19. Steam jet air ejector
12-20. Modern air ejector plant
12-21. Exhaust connections

Objective questions
Chapter 14 TESTING OF INTERNAL COMBUSTION ENGINE

14-1. Introduction
14-2. Testing of constant speed internal combustion engines according to Indian standard
14-3. Performance test according to Indian standard
 Power testing
 Speed testing
 Frictional power
 Fuel consumption
14-4. Measurement of speed
14-5. Measurement of power
14-6. Indicated power
14-7. Brake power
14-8. Types of dynamometer
14-9. Mechanical efficiency
14-10. Measurement of air consumption
14-11. Viscous air flow meter
14-11-2. Air box meter
14-12. Volumetric efficiency
14-13. Fuel consumption
14-14. Specific fuel consumption
14-15. Thermal efficiency
14-15-1. Indicated thermal efficiency
14-15-2. Brake thermal efficiency
14-16. Effect of parameter on efficiency
14-17. Effect of various parameters on thermal efficiency
14-18. Effect of parameters on volumetric efficiency
14-19. Testing of engine
14-20. Specimen set of calculations for test
14-21. Graphical representation of results
14-22. Conclusions and criticisms
14-23. Exhaust gas calorimeter
14-24. Engine performance curves

Chapter 15 GAS TURBINE

15-1. Introduction
15-2. Advantages of gas turbines over reciprocating Internal combustion engines
15-3. Advantages of gas turbine over steam turbine
15-4. Applications of gas turbines
15-5. Types of gas turbines
15-5-1. Constant volume or explosion type
15-5-2. Constant pressure or continuous combustion type turbine
15-6. Fuel in gas turbines
15-7. Air standard cycle for gas turbine
15-8. Work ratio
15-9. Classification of gas turbine cycles
15-9-1. Open cycle
15-9-2. Closed cycle gas turbine
15-10. Working medium
15-11. Advantages of closed cycle gas turbines
15-12. Effect of friction or actual process
15-13. Types of compressors

Chapter 16 AIR POLLUTION AND CONTROL

16-1. Introduction
16-2. Automotive air pollution
16-3. Climatic effect
16-4. Types of air pollution
16-5. Sources of automotive air pollution
16-6. Harmful constituents of exhaust gas
16-7. Public health risk
16-8. Study of emissions
16-8-1. Causes and process of formation of pollutants
16-8-2. Unburned hydrocarbon
16-8-3. Nitrogen oxide
16-8-4. Carbon mono-oxide
16-8-5. Engine particulate emissions
16-8-6. Lead compounds
16-9. Laws of automotive air pollution
16-10. Emission control techniques
16-11. Engine design modification
16-12. Using external devices
16-13. Water injection system
16-14. Air injection system
16-15. Thermal reactor
16-16. Ammonia injection
16-17. Exhaust gas recirculator (EGR)
16-18. Catalytic convertor system
16-19. Pollution control in thermal power stations
16-20. Dust collection and its disposal
16-21. Type of gas cleaning devices
16-22. Gravitational separators
16-23. Centrifugal separator
16-24. Inertia type
16-25. Scrubbing dust collector
16-26. Filter type dust separator
16-27. Electrostatic precipitator
16-28. Ash handling system
16-29. Hydraulic ash handling system
16-29-1. Low velocity system
16-29-2. High velocity system
16-30. Pneumatic ash handling system
16-31. Steam jet system
16-32. Ash disposal and their uses
16-33. Combustion control

Appendix A SHORT QUESTIONS FOR VIVA-VOCE

Appendix B STEAM TABLES WITH MOLLIER DIAGRAM

Index