
The entire subject matter is presented in simple and lucid language. Number of figures, graphs, tables and solved examples are contributed along with the text matter to understand the subject matter easily.

The book contains 12 Chapters and Appendix:

- 187 Neatly drawn self-explanatory diagrams
- 77 Useful Tables giving technical data
- 28 Solved Examples
- 159 Questions and Exercises are given at the end of chapters.

It is the fervent hope of the author that this book will satisfy the needs of the Mechanical, Production, Automobile Engineering students preparing for the B.Tech/B.E. examinations of almost all the Indian Universities, Diploma examinations conducted by various Boards of Technical Education, Certificate courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E. and other similar competitive and professional Examinations. It should also be of an immense help to the practising Mechanical Engineers.
Chapter 1 MANUFACTURING TECHNOLOGY
1-1 Introduction
1-2 Design considerations
1-3 Factors affecting manufacturing processes
1-4 Types of materials
1-5 Manufacturing processes
1-6 Manufacturing cost
1-7 Break even point
1-8 Reasons for cost estimates
1-9 Factors affecting estimates
1-10 Skills required for cost estimates

Chapter 2 MANUFACTURING MATERIALS
Part I: Ferrous metals
2-1 Introduction
2-2 Types of cast iron
2-3 Iron–carbon equilibrium diagram
2-4 Types of carbon steels
2-5 Effect of residual elements on carbon steels
2-6 Alloy steels–classification
2-7 Alloying elements
2-8 Properties of stainless steels and alloy steels
2-9 Material coding (designation) system
Part II: Non-ferrous metals and alloys
2-10 Aluminium and aluminium alloys
2-11 Copper and copper alloys
2-12 Magnesium and magnesium alloys
2-13 Titanium alloys
2-14 Zinc and zinc alloys
2-15 Tin and tin alloys
2-16 Bearing alloys
Part III: Ceramics
2-17 Ceramics–constituents, structure and properties
2-18 Ceramic fibres
2-19 Ceramic composites
Part IV: Composites
2-20 Composites
2-21 Materials for nuclear energy

Chapter 3 PROPERTIES AND TESTING OF MATERIALS
3-1 Properties of materials
3-2 Elastic and plastic behaviour
3-3 Stress and strain
3-4 Stress–strain diagram for carbon steel
3-5 Yield and tensile strength
3-6 Compressive, shear and torsional strengths
3-7 Ductility
3-8 Malleability
3-9 Brittleness
3-10 Hardness
3-11 Hardenability
3-12 Toughness
3-13 Stiffness
3-14 Tenacity
3-15 Resilience
3-16 Factors affecting mechanical properties
3-17 Impact strength
3-18 Hardness tests
3-19 Fracture
3-20 Factors affecting fracture
3-21 Fracture failure prevention
3-22 Fracture toughness
3-23 Factors affecting fracture toughness
3-24 Fatigue
3-25 Factors affecting fatigue properties
3-26 Fatigue test
3-27 Creep
3-28 Factors affecting creep
3-29 Mechanism of creep
3-30 Creep resisting materials
3-31 Non destructive testing (NDT)
3-32 X-rays properties and applications

Chapter 4 PLASTIC FLOW AND MECHANICAL WORKING OF METALS
4-1 Introduction
4-2 Variables in metal working
4-3 Wrought versus cast metals
4-4 Plastic deformation
4-5 Mechanical working processes
4-6 Cold working
4-7 Warm working of metals
4-8 Hot working of metals
4-9 Work (strain) hardening
4-10 Annealing of cold worked metals
4-11 Recovery (stress relieving)
4-12 Re-crystallisation
4-13 Grain growth
4-14 Grain size measurement

Chapter 5 ROLLING AND EXTRUSION
Part I: Rolling
5-1 Introduction
5-2 Principles of rolling
5-3 Methods of rolling
5-4 Classification of rolling mills
5-5 Roll passes
5-6 Break down passes
5-7 Draught
5-8 Roll Materials
5-9 Tube (roll) piercing
5-10 Defects in rolled products
Part II: Extrusions
5-11 Principle of extrusion
5-12 Design considerations and limitations
5-13 Types of extrusions
5-14 Forward hot extrusion
5-15 Backward hot extrusion
5-16 Hydrostatic (forward cold) extrusion
5-17 Impact (backward cold) extrusion
5-18 Cold extrusion forging
5-19 Advantages of extrusion
5-20 Extrusion blow moulding
5-21 Extrusion pressure
5-22 Wire drawing
5-23 Tube drawing
5-24 Bar drawing
5-25 Rotary swaging
5-26 Straightening

Chapter 6 PROCESSES AND EQUIPMENT
Part I: Production Processes
6-1 Introduction
6-2 Casting processes
6-3 Forming processes
6-4 Joining processes
Part II: Equipment
6-5 Cast iron and steel foundry equipment
6-6 Steel rolling mill equipment
6-7 Extrusion equipment
6-8 Special equipment

Chapter 7 PRODUCTION TECHNOLOGY VOL. I
DETAILED CONTENTS
Chapter 6 FORGING
6-1 Introduction
6-2 Drop forging impressions
6-3 Methods of forging
6-4 Forging processes
6-5 Smith forging
6-6 Drop (die) forging
6-7 Press forging
6-8 Machine (upset) forging
6-9 High energy rate forging
6-10 Roll forging
6-11 Forge welding
6-12 Forging materials
6-13 Dies for drop forging
6-14 Dies for upset forging
6-15 Forging design
6-16 Design guidelines for dies and punches
6-17 Allowances on forgings
6-18 Forging defects
6-19 General considerations
6-20 Operations before and after forging
6-21 Forged vis-à-vis cast parts
Questions 6

Chapter 7 SHEET METAL FORMING
7-1 Sheet metal forming processes
7-2 Shearing operations
7-3 Shearing with dies
7-4 Angular clearance for dies
7-5 Clearances for punch and die
7-6 Minimum diameter for piercing
7-7 Design requirements for punch press parts
7-8 Shearing force and work done
7-9 Stripping force
7-10 Drawing
7-11 Deep drawing
7-12 Blank size
7-13 Punch (drawing) force
7-14 Lubrication
7-15 Punch (drawing) speed
7-16 Forming (bending)
7-17 Forming (bending) methods
7-18 Bend length
7-19 Bending load
7-20 Work done during bending
7-21 Power required
7-22 Stretch forming
7-23 Bulging
7-24 Coining, embossing and stamping
7-25 Tests on sheet metals
7-26 Spinning
7-27 Power press construction
7-28 Types of power presses
7-29 Safety devices for power press
Exercise 7

Chapter 8 SAND MOULDING PRACTICES AND METAL CASTING
Part I: Sand moulding and moulding processes
8-1 Introduction
8-2 Basic steps in sand moulding
8-3 Sand mould preparation
8-4 Pattern materials and types
8-5 Pattern allowances
8-6 Moulding processes and materials
8-6-1 Processes based upon type of sand used
8-6-2 Processes based upon machine used
8-6-3 Special moulding processes
8-6-4 Methods used
8-7 Types of moulding sand
8-8 Properties of moulding sand
8-9 Sand tests
8-10 Mould and core materials
8-11 Core making
8-12 Core boxes and core plates
8-13 Core dryers
8-14 Chaplets
8-15 Core prints
8-16 Core sands and binders
8-17 Core making machines
8-18 Gating system
8-18-1 Components of gating system
8-18-2 Types of gating
8-19 Gating design
8-20 Pouring time
8-21 Fluidity of molten metal and fluidity test
8-22 Terminology
Part II: Metal casting
8-23 Solidification of metals
8-24 Design for sound castings
8-25 Types of casting processes
8-26 Permanent mould castings
8-27 Expandable mould and pattern castings
8-27-1 Investment or precision castings
8-27-2 Plaster mould casting
8-27-3 Ceramic mould castings
8-27-4 Antioch casting
8-28 Permanent pattern castings
8-29 Newly developed casting process
Part III: Cleaning and inspection of castings
8-30 Cleaning and finishing of castings
8-31 Casting defects and remedies
8-32 Precautions to avoid defects
8-33 Inspection of castings
8-34 Casting yield
Exercise 9

Chapter 9 MELTING FURNACES
9-1 Melting furnaces
9-2 Types of furnaces
9-3 Cupola: Melting furnace for ferrous metals
9-4 Cupola operation
9-5 Cupola charging
9-6 Cupola efficiency and heat balance
9-7 Gas and/or liquid fuel furnaces
9-8 Open hearth (reverberatory) furnace
9-9 Air furnace
9-10 Crucible furnace: For melting non-ferrous metals
9-11 Non-crucible furnaces
9-12 Rotary melting furnaces
9-13 Bessemer converter
9-14 Ladles
9-15 Electric furnaces
9-16 Temperature measurement
Exercise 9

PRODUCTION TECHNOLOGY VOL. I
DETAILED CONTENTS
Chapter 10 WELDING AND OTHER JOINING PROCESSES

10-1 Joining processes
10-2 Welding process
10-3 Types of welding processes
10-4 Oxy-acetylene gas welding
10-5 Gas welding techniques
10-6 Arc welding
10-7 Shielded metal arc welding (SMAW)
10-8 Flux cored arc welding (FCAW)
10-9 Submerged arc welding (SAW)
10-10 Gas metal arc welding (GMAW)
10-11 Tungsten inert-gas (TIG) welding
10-12 Plasma arc welding (PAW)
10-13 Resistance welding
10-14 Solid state welding
10-15 Thermit welding
10-16 Electron beam welding (EBW)
10-17 Laser beam welding (LBW)
10-18 Electro-slag welding (ESW)
10-19 Atomic hydrogen welding (AHW)
10-20 Robotic arc welding (RAW)
10-21 Types of weld joints
10-22 Electrode classification
10-23 Soldering
10-24 Brazing
10-25 Brazing welding
10-26 Metallizing
10-27 Welding of various metals
10-28 Welding defects
10-29 Thermal cutting
10-30 Mechanical fasteners
10-31 Adhesive bonding
10-32 Types of adhesives
10-33 Terminology
 Exercise 10

Chapter 11 PLASTICS AND PLASTIC MouldING

11-1 Introduction
11-2 Characteristics of plastics
11-3 Thermoplastic polymers
11-4 Thermosetting polymers
11-5 Additives
11-6 Moulding processes
11-7 Compression moulding
11-8 Transfer moulding
11-9 Injection moulding
11-10 Design requirements for injection moulding
11-11 Jet blowing
11-12 Plastic extrusion process
11-13 Blow moulding
11-14 Rotational moulding
11-15 Calendering
11-16 Thermo-forming (vacuum forming)
11-17 Blown film process
11-18 Casting
11-19 Design of plastic moulds
11-20 Machining of plastics
11-21 Laminates
11-22 Foamed plastics
11-23 Summary of plastic moulding processes
11-24 Joining of plastics
11-25 Plastics in packaging
 Exercise 11

Chapter 12 SURFACE FINISHING AND COATINGS

12-1 Introduction
12-2 Cleaning and finishing
12-3 Chemical cleaning
12-4 Mechanical cleaning
12-5 Thermal-expllosive debarring
12-6 Electro-polishing/forming
12-7 Surface coating
12-8 Properties of coatings
12-9 Types of coatings
12-10 Metallic coatings
12-11 Organic coatings
12-11-1 Constituents and application of paints
12-12 Inorganic coatings
12-13 Chemical conversions
12-14 Plastic coating
12-15 Electron beam coating
 Exercise 12

Appendix USEFUL TABLES

Table A–1 S.I. Units, Conversion factors, Prefix names
Table A–2 Conversion factors
Table A–3 Prefix names, Symbols and Multiplication factors
Table A–4 Applicable Indian Standards

Index