MECHANICS OF STRUCTURES VOL. I
[STRENGTH OF MATERIALS]

By
Dr. H. J. Shah & S. B. Junnarkar

Size : 170 mm × 240 mm
Binding : Paperback with 4 Color Jacket Cover
Pages : 992 + 20

ABOUT THE BOOK
This standard text-book along with its companion Vol. II is designed to cover the complete syllabi of the subjects of Strength of Materials and Theory and Analysis of Structures.

The outline of the book is:
Chapters 1 to 8 consist the study of Stresses and Strains
Chapters 9 and 24 discuss the Testing of Materials
Chapters 10 and 11 Shear Forces and Bending Moments
Chapters 12 and 13 Properties of Lines and Areas
Chapters 14 and 15 Stresses in Beams
Chapters 16 and 17 Deflections
Chapters 18 and 19 Analysis of Fixed and Continuous Beams
Chapters 20 and 21 Composite and Reinforced Concrete Beams
Chapters 22 Direct and Bending Stresses and Chapter 23 Torsion
Chapters 25 Columns and Struts of Uniform Section
Chapters 26 Cylindrical and Spherical Shells
Chapters 27 and 28 Riveted, Bolted and Welded Joints
Chapters 29, 30 and 31 consist of special topics such as Shear Centre, Unsymmetrical Bending and Bending Stresses in Curved Bars.

The book within its 971 + 20 pages, it now comprise the following:
* 900 Neatly drawn figures
* 600 Fully illustrated solved examples
* 715 Unsolved examples with answers at the end of chapters
* 33 Useful tables

It is hoped that this edition should prove extremely useful to students of Engineering reading for Degree Examinations of all the Universities of India, Diploma Examinations conducted by various Boards of Technical Education, Certificate Courses, as well as for the U.P.S.C., G.A.T.E., A.M.I.E., I.E.S and other similar competitive and professional examinations. It should also prove of great interest and practical use to the practising engineers.
Chapter 1 SIMPLE STRESS
1-1. Introduction to Mechanics of deformable bodies
1-2. Loading a bar
1-3. Principle of superposition
1-4. Classification of loaded bar
1-5. Gradual, sudden, impact and shock loading
1-6. Tension and compression
1-7. Resistance of an axially loaded bar
1-8. Concept of a stress
1-9. Normal stresses
1-10. Simple stress
1-11. Design of an axially loaded member
1-12. Non-prismatic bars
1-13. Axial force diagram
1-14. Rotating rings
1-15. Shear
1-16. Shear stress
1-17. Pure shear
1-18. Bearing stress

Chapter 2 SIMPLE STRAIN
2-1. Introduction
2-2. Linear strain
2-3. Shear strain
2-4. Elasticity
2-5. Hooke’s law
2-6. Axial and shear deformations
2-7. Bars of varying section
2-8. Bars of uniformly varying cross-section
2-9. A bar subjected to self-weight
2-10. Bar of uniform strength
2-11. Bars subjected to uniformly varying loads
2-12. Pin-jointed determinate frames
2-13. Lateral strain: Poisson’s ratio
2-14. Biaxial and triaxial deformations

Chapter 3 STATICALLY INDETERMINATE MEMBERS
3-1. Introduction
3-2. Composite bars
3-3. Equivalent modulus of a composite bar
3-4. Pin-jointed bars
3-5. Stresses due to lack of fit

Chapter 4 THERMAL STRESSES AND STRAINS
4-1. Introduction
4-2. General
4-3. Coefficient of linear expansion
4-4. Stresses due to changes of temperature
4-5. Compound bar
4-6. Composite bar
4-7. Bars of uniformly varying cross-section
4-8. Shrinking-on

Chapter 5 STRESSES ON INCLINED PLANES
5-1. Introduction
5-2. Stresses on inclined plane of a bar under tension or compression
5-3. State of pure shear: Stresses on inclined planes
5-4. Linear strain of the diagonal BD
5-5. Relation between the Moduli of Elasticity and Rigidity for a given material
5-6. Bulk Modulus
5-7. Relation between three elastic constants

Chapter 6 COMBINED STRESSES
6-1. Introduction
6-2. Stress components
6-3. Element subjected to general plane stress system
6-4. Principal planes and principal stresses
6-5. Planes carrying maximum shear stress
6-6. Element subjected to principal stresses

Chapter 7 MOHR’S CIRCLE METHOD
7-1. Mohr’s circle method
Sign conventions
Rules and construction
Examples VII

Chapter 8 IMPACT OR SHOCK LOADING: STRAIN-ENERGY
8-1. Introductory
AXIAL LOADING
8-2. Strain-Energy: Resistance-deformation diagram
8-3. Gradual, sudden, impact and shock loading
8-4. Limitations
SHEAR LOADING
8-5. Shear Resilience
8-6. Strain-energy in terms of principal stresses
8-7. Relation between the elastic moduli
8-8. Criteria for design
Examples VIII

Chapter 9 TESTING OF MATERIALS – I
9-1. Introduction
9-2. Metals and alloys
9-3. Testing machines
TENSION TESTS
9-4. The complete tensile test
9-5. Stress–strain diagram
9-6. Physical properties of materials
9-7. Modulus of elasticity
9-8. Yield point by the offset method: Proof stress
9-9. Secant modulus
9-10. Specific modulus of elasticity
9-11. Resilience
9-12. Toughness
COMPRESSION TESTS
9-13. The compression test
9-14. Compression tests on wood and concrete
STRESS CONCENTRATION
9-16. Stress concentration
9-17. Stress concentration factor
9-18. Importance of stress concentration under different loads
9-19. Elastoplastic materials: Limit design
Examples IX

Chapter 10 SHEAR FORCES AND BENDING MOMENTS – I
10-1. Introductory
10-2. Types of beams
10-3. Actions on the cross-section of a beam
10-4. Sign conventions
10-5. Shear Force (S.F.) and Bending Moment (B.M.) diagrams
10-6. Cantilevers
10-7. Simply supported beams
10-8. Relation between the S.F. and the B.M. at a cross-section of a beam
10-9. Overhanging beams
Examples X

Chapter 11 SHEAR FORCES AND BENDING MOMENTS – II
11-1. Introduction
11-2. S.F. and B.M. diagrams for beams with variable loading
11-3. Beams with end couples
11-4. Beams with an intermediate couple
11-5. Supports offering pressures
11-6. Cantilever structures
11-7. Principle of superposition
11-8. Moment and loading diagrams drawn from shear diagrams
11-9. Beams subjected to inclined loads
11-10. Inclined beams
11-11. Graphical methods
Examples XI
Chapter 12 CENTROIDS OF LINES AND AREAS

12-1. Introduction

12-2. First moment of an element of line and area
12-3. First moment of a line segment and a finite area
12-4. Centroids of lines and areas
12-5. Centroids of symmetrical lines and areas
12-6. Centroids by integration
12-7. Summary of centroids of common figures
12-8. Centroids of composite areas

Examples XII

Chapter 13 AREA MOMENTS OF INERTIA

13-1. Introduction
13-2. Definitions
13-3. Radius of gyration
13-4. Parallel axis theorem
13-5. Moment of inertia by integration
13-6. Moment of inertia of composite areas
13-7. Graphical method for first and second moments of a plane section about an axis in its plane
13-8. Product of inertia
13-9. Moment of inertia with respect to inclined axes: Rotation of axes
13-10. Principal moments of inertia: Principal axes
13-11. Mohr’s circle for moments of inertia
13-12. The Mohr Land circle of inertia
13-13. Momental ellipse

Examples XIII

Chapter 14 BENDING STRESSES IN BEAMS

14-1. Simple bending
14-2. Theory of simple bending
14-3. Modulus of section or section modulus
14-4. Application of bending equation
14-5. Modulus of rupture
14-6. Beams of rectangular section
14-7. Strength of sections
14-8. Economic sections
14-9. Unsymmetrical and built-up sections
14-10. The Modulus figure
14-11. Beam of uniform strength
14-12. Strain energy in flexure
14-13. Laminated springs

Examples XIV

Chapter 15 SHEAR STRESSES IN BEAMS

15-1. Resistance to shear force: shear stresses
15-2. Shear flow
15-3. Shear stresses in beams of rectangular and circular sections
15-4. Shear stresses in beams of I-section
15-5. Assumptions and limitations of the shear stresses formula
15-6. Shear stresses in built-up sections
15-7. Beam of square section with one diagonal horizontal
15-8. Design for flexure and shear
15-9. Principal stresses and Principal planes at a point in a beam section
15-10. Curves of principal stresses
15-11. Principal stresses in an I-section
15-12. Strain-energy due to shear in a beam

Examples XV

Chapter 16 DEFLECTIONS I

16-1. Introductory
16-2. Use of deflection computations
16-3. Bending into a circular arc
16-4. Relation between slope deflection and radius of curvature
16-5. Axes of reference
16-6. Limitations of the equation of elastic line
16-7. Computations from basic equation
16-8. Using the principle of superposition
16-9. Cantilevers
16-10. Propped cantilevers
16-11. Simply supported beams
16-12. Relation between maximum stress and maximum deflection
16-13. Propped beams — Rigid and elastic props
16-14. Simply supported beam with an eccentric load W
16-15. Non-prismatic beams
16-16. Macaulay’s method
16-17. Variable loading on a beam of uniform section
16-18. Closure

Examples XVI

Chapter 17 DEFLECTIONS II

17-1. Moment area method
17-2. Method of elastic weights
17-3. Conjugate beam method
17-4. Impact loading on beams
17-5. Deflection by strain energy
17-6. Beams of variable section
17-7. Graphical methods

Examples XVII

Chapter 18 FIXED BEAMS

18-1. Introductory

18-2. Determinateness of the structure
18-3. Use of indeterminate structures
18-4. Methods of analysis

18-5. Fixed, built in, restrained or encastré beams
18-6. Method of superposition
18-7. Double integration method
18-8. Solution by moment area method
18-9. Sinking of support
18-10. Rotation of support
18-11. Review of deflection methods
18-12. Degree of restraint at supports for maximum bending moment to be as small as possible
18-13. Beams with related deflections

Examples XVIII

Chapter 19 CONTINUOUS BEAMS

19-1. Continuous beams
19-2. The three moment theorem
19-3. Support settlement

Examples XIX

Chapter 20 COMPOSITE BEAMS

20-1. Introductory
20-2. Flitched beams
20-3. Equivalent section: Transformed area method
20-4. Deflection of composite beams

Examples XX

Chapter 21 REINFORCED CONCRETE BEAMS

21-1. Reinforced concrete
21-2. Compressive strength of concrete
21-3. Steel as reinforcement
21-4. Types of reinforcement
21-5. Mild steel bars
21-6. High yield strength deformed (HYSD) bars
21-7. Design of a beam
21-8. Classification of beams
21-10. Permissible stresses
21-11. Assumptions for flexure design

SINGLY REINFORCED BEAMS
21-12. Derivation of formulae for balanced design
21-13. Transformed area method
21-14. Types of problems

Examples XXI
Chapter 22 DIRECT AND BENDING STRESSES

22-1. Introduction
22-2. Combined axial and flexural load
22-3. Biaxial loading
22-4. Eccentric loading
22-5. Limit of eccentricity
22-6. Double eccentricity
22-7. Wind pressure on walls and chimney shafts
22-8. Coefficient of wind-resistance
22-9. Water and earth pressure on walls

Examples XXII

Chapter 23 SHAFTS AND SPRINGS IN TORSION

23-1. Introduction
23-2. Assumptions
23-3. Derivation of torsion formulae
23-4. Power transmitted: design of shafts
23-5. Torque diagrams
23-6. Stepped shaft
23-7. Composite shafts and tapered shaft
23-8. Keys and couplings
23-9. Combined bending and torsion
23-10. Combined bending and torsion and axial thrust
23-11. Torsion resilience of shafts
23-12. Shafts of non-circular sections subjected to torsion
23-13. Closely coiled helical springs: Axial loading
23-14. Closely coiled helical springs: Axial moment
23-15. Open coiled helical springs

Examples XXIII

Chapter 24 TESTING OF MATERIALS – II

24-1. Flexure tests
24-2. Important flexure tests
24-3. Shear tests
24-4. Hardness
24-5. Brinell hardness test
24-6. Rockwell hardness test
24-7. Impact tests
24-8. Fatigue
24-9. Stress spectrum
24-10. Fatigue tests
24-11. The S-N curve
24-12. Endurance limit or fatigue limit
24-13. Fatigue failure

Examples XXIV

Chapter 25 COLUMNS AND STRUTS OF UNIFORM SECTION

25-1. Axial loading
25-2. Very long columns — Euler’s formula
25-3. Limitations of Euler’s formulae
25-4. Intermediate columns
25-5. Rankine’s formula
25-6. Design of struts and columns
25-7. Other empirical formulae
25-8. Long columns under eccentric loading
25-9. Prof. Perry’s formula
25-10. Initial curvature on long column: Axial loading
25-11. Perry-Robertson formula
25-12. B.I.S. formula
25-13. Struts with transverse loading

Examples XXV

Chapter 26 RADIAL PRESSURE – CYLINDRICAL AND SPHERICAL SHELLS

26-1. Thin seamless cylindrical shells
26-2. Riveted boiler shells
26-3. Thin spherical shell
26-4. Wire-bound thin pipes or shells
26-5. Thick cylinders: Lamé’s formulae
26-6. Design of thick cylindrical shells
26-7. Compound cylinders
26-8. Shrink-fit allowance: Initial difference of radii at junction
26-9. Thick spherical shells

Examples XXVI

Chapter 27 RIVETED AND BOLTED JOINTS

27-1. Introductory
27-2. Rivets and riveting
27-3. Bolts and bolting
27-4. Bearing and friction type connections
27-5. Types of riveted and bolted joints
27-6. Definitions
27-7. Possible ways of failure of bearing type connection
27-8. Strength of a bearing type connection
27-9. Fastener value
27-10. Design of a riveted/bolted joint
27-11. Riveted joints in boiler shells
27-12. Structural joints
27-13. Diamond fastening
27-14. Pitch of rivets in built-up girders
27-15. Eccentric loading on rivets

Examples XXVII

Chapter 28 WELDED JOINTS

28-1. Introductory
28-2. Forms of welded joints
28-3. Strength of a welded joint
28-4. Eccentric loading on welded joints

Examples XXVIII

Chapter 29 SHEAR CENTRE

29-1. Shear flow in thin-walled open sections
29-2. Shear centre

Examples XXIX

Chapter 30 UNSYMMETRICAL BENDING

30-1. Introductory
30-2. Unsymmetrical bending
30-3. Bending stress through product of inertia
30-4. The Z-polygon

Examples XXX

Chapter 31 BENDING STRESSES IN CURVED BARS

31-1. Pure bending of curved bars
31-2. Stresses in beams of large initial curvature
31-3. Rectangular cross-section
31-4. Trapezoidal cross-section
31-5. Inverted T-section
31-6. I-section
31-7. Circular cross-section
31-8. Crane hooks
31-9. Stresses in curved bars of small initial curvature
31-10. Piston rings

Examples XXXI