ABOUT THE BOOK

This standard text-book along with its companion Vol. II is designed to cover the complete syllabus of the subjects of Strength of Materials and Theory and Analysis of Structures.

The outline of the book is:

Chapters 1 to 8 consist the study of Stresses and Strains
Chapters 9 and 24 discuss the Testing of Materials
Chapters 10 and 11 Shear Forces and Bending Moments
Chapters 12 and 13 Properties of Lines and Areas
Chapters 14 and 15 Stresses in Beams
Chapters 16 and 17 Deflections
Chapters 18 and 19 Analysis of Fixed and Continuous Beams
Chapters 20 and 21 Composite and Reinforced Concrete Beams
Chapters 22 Direct and Bending Stresses and Chapter 23 Torsion
Chapters 25 Columns and Struts of Uniform Section
Chapters 26 Cylindrical and Spherical Shells
Chapters 27 and 28 Riveted, Bolted and Welded Joints
Chapters 29, 30 and 31 consist of special topics such as Shear Centre, Unsymmetrical Bending and Bending Stresses in Curved Bars.

The book within its 971 + 20 pages, it now comprise the following:

* 900 Neatly drawn figures
* 600 Fully illustrated solved examples
* 715 Unsolved examples with answers at the end of chapters
* 33 Useful tables

It is hoped that this edition should prove extremely useful to students of Engineering reading for Degree Examinations of all the Universities of India, Diploma Examinations conducted by various Boards of Technical Education, Certificate Courses, as well as for the U.P.S.C., G.A.T.E., A.M.I.E., I.E.S and other similar competitive and professional examinations. It should also prove of great interest and practical use to the practising engineers.

CONTENT

1: SIMPLE STRESS
2: SIMPLE STRAIN
3: STATICALLY INDETERMINATE MEMBERS
4: THERMAL STRESSES AND STRAINS
5: STRESSES ON INCLINED PLANES
6: COMBINED STRESSES
7: MOHR’S CIRCLE METHOD
8: IMPACT OR SHOCK LOADING: STRAIN-ENERGY
9: TESTING OF MATERIALS – I
10: SHEAR FORCES AND BENDING MOMENTS – I
11: SHEAR FORCES AND BENDING MOMENTS – II
12: CENTROIDS OF LINES AND AREAS
13: AREA MOMENTS OF INERTIA
14: BENDING STRESSES IN BEAMS
15: SHEAR STRESSES IN BEAMS
16: DEFLECTIONS I
17: DEFLECTIONS II
18: FIXED BEAMS
19: CONTINUOUS BEAMS
20: COMPOSITE BEAMS
21: REINFORCED CONCRETE BEAMS
22: DIRECT AND BENDING STRESSES
23: SHAFTS AND SPRINGS IN TORSION
24: TESTING OF MATERIALS – II
25: COLUMNS AND STRUTS OF UNIFORM SECTION
26: RADIAL PRESSURE
--- CYLINDRICAL AND SPHERICAL SHELLS
27: RIVETED AND BOLTED JOINTS
28: WELDED JOINTS
29: SHEAR CENTRE
30: UNSYMMETRICAL BENDING
31: BENDING STRESSES IN CURVED BARS

INDEX
Chapter 1 SIMPLE STRESS
1-1. Introduction to Mechanics of deformable bodies
1-2. Loading a bar
1-3. Principle of superposition
1-4. Classification of loaded bar
1-5. Gradual, sudden, impact and shock loading
1-6. Tension and compression
1-7. Resistance of an axially loaded bar
1-8. Concept of a stress
1-9. Normal stresses
1-10. Simple stress
1-11. Design of an axially loaded member
1-12. Non-prismatic bars
1-13. Axial force diagram
1-14. Rotating rings
1-15. Shear
1-16. Shear stress
1-17. Pure shear
1-18. Bearing stress
Examples I

Chapter 2 SIMPLE STRAIN
2-1. Introduction
2-2. Linear strain
2-3. Shear strain
2-4. Elasticity
2-5. Hooke’s law
2-6. Axial and shear deformations
2-7. Bars of varying section
2-8. Bars of uniformly varying cross-section
2-9. A bar subjected to self-weight
2-10. Bar of uniform strength
2-11. Bars subjected to uniformly varying loads
2-12. Pin-jointed determine frames
2-13. Lateral strain: Poisson’s ratio
2-14. Biaxial and triaxial deformations
Examples II

Chapter 3 STATICALLY INDETERMINATE MEMBERS
3-1. Introduction
3-2. Composite bars
3-3. Equivalent modulus of a composite bar
3-4. Pin-jointed bars
3-5. Stresses due to lack of fit
Examples III

Chapter 4 THERMAL STRESSES AND STRAINS
4-1. Introduction
4-2. General
4-3. Coefficient of linear expansion
4-4. Stresses due to changes of temperature
4-5. Compound bar
4-6. Composite bar
4-7. Bars of uniformly varying cross-section
4-8. Shrinking-on
Examples IV

Chapter 5 STRESSES ON INCLINED PLANES
5-1. Introduction
5-2. Stresses on inclined plane of a bar under tension or compression
5-3. State of pure shear: Stresses on inclined planes
5-4. Linear strain of the diagonal BD
5-5. Relation between the Moduli of Elasticity and Rigidity for a given material
5-6. Bulk Modulus
5-7. Relation between three elastic constants
Examples V

Chapter 6 COMBINED STRESSES
6-1. Introduction
6-2. Stress components
6-3. Element subjected to general plane stress system
6-4. Principal planes and principal stresses
6-5. Planes carrying maximum shear stresses
6-6. Element subjected to principal stresses
Examples VI

Chapter 7 MOHR’S CIRCLE METHOD
7-1. Mohr’s circle method
7-2. Sign conventions
7-3. Rules and construction
Examples VII

Chapter 8 IMPACT OR SHOCK LOADING: STRAIN-ENERGY
8-1. Introductory
8-2. Axial Loading
8-4. Limitations
8-5. Shear Loading
8-6. Shear Resilience
8-7. Strain-energy in terms of principal stresses
8-8. Criteria for design
Examples VIII

Chapter 9 TESTING OF MATERIALS – I
9-1. Introduction
9-2. Metals and alloys
9-3. Testing machines
9-4. Tension Tests
9-5. The complete tensile test
9-6. Stress–strain diagram
9-7. Physical properties of materials
9-8. Modulus of elasticity
9-9. Secant modulus
9-10. Specific modulus of elasticity
9-11. Resilience
9-12. Toughness
Examples IX

Chapter 10 SHEAR FORCES AND BENDING MOMENTS – I
10-1. Introductory
10-2. Types of beams
10-3. Actions on the cross-section of a beam
10-4. Sign conventions
10-5. Shear Force (S.F.) and Bending Moment (B.M.) diagrams
10-6. Cantilevers
10-7. Simply supported beams
10-8. Relation between the S.F. and the B.M. at a cross-section of a beam
10-9. Overhanging beams
Examples X
Chapter 11 SHEAR FORCES AND BENDING MOMENTS – II
11-1. Introduction
11-2. S.F. and B.M. diagrams for beams with variable loading
11-3. Beams with end couples
11-4. Beams with an intermediate couple
11-5. Supports offering pressures
11-6. Cantilever structures
11-7. Principle of superposition
11-8. Moment and loading diagrams drawn from shear diagrams
11-9. Beams subjected to inclined loads
11-10. Inclined beams
11-11. Graphical methods
Examples XI

Chapter 12 CENTROIDS OF LINES AND AREAS
12-1. Introduction
Centroids
12-2. First moment of an element of line and area
12-3. First moment of a line segment and a finite area
12-4. Centroids of lines and areas
12-5. Centroids of symmetrical lines and areas
12-6. Centroids by integration
12-7. Summary of centroids of common figures
12-8. Centroids of composite areas
Examples XII

Chapter 13 AREA MOMENTS OF INERTIA
13-1. Introduction
13-2. Definitions
13-3. Radius of gyration
13-4. Parallel axis theorem
13-5. Moment of inertia by integration
13-6. Moment of inertia of composite areas
13-7. Graphical method for first and second moments of a plane section about an axis in its plane
13-8. Product of inertia
13-9. Moment of inertia with respect to inclined axes: Rotation of axes
13-10. Principal moments of inertia: Principal axes
13-11. Mohr’s circle for moments of inertia
13-12. The Mohr Land circle of inertia
13-13. Momental ellipse
Examples XIII

Chapter 14 BENDING STRESSES IN BEAMS
14-1. Simple bending
14-2. Theory of simple bending
14-3. Modulus of section or section modulus
14-4. Application of bending equation
14-5. Modulus of rupture
14-6. Beams of rectangular section
14-7. Strength of sections
14-8. Economic sections
14-9. Unsymmetrical and built-up sections
14-10. The Modulus figure
14-11. Beam of uniform strength
14-12. Strain energy in flexure
14-13. Laminated springs
Examples XIV

Chapter 15 SHEAR STRESSES IN BEAMS
15-1. Resistance to shear force: shear stresses
15-2. Shear flow
15-3. Shear stresses in beams of rectangular and circular sections
15-4. Shear stresses in beams of I-section
15-5. Assumptions and limitations of the shear stresses formula
15-6. Shear stresses in built-up sections
15-7. Beam of square section with one diagonal horizontal
15-8. Design for flexure and shear
15-9. Principal stresses and Principal planes at a point in a beam section
15-10. Curves of principal stresses
15-11. Principal stresses in an I-section
15-12. Strain-energy due to shear in a beam
Examples XV

Chapter 16 DEFLECTIONS I
16-1. Introductory
16-2. Use of deflection computations
16-3. Bending into a circular arc
16-4. Relation between slope deflection and radius of curvature
16-5. Axes of reference
16-6. Limitations of the equation of elastic line
16-7. Computation from basic equation
16-8. Using the principle of superposition
16-9. Cantilevers
16-10. Propped cantilevers
16-11. Simply supported beams
16-12. Relation between maximum stress and maximum deflection
16-13. Propped beams — Rigid and elastic props
16-14. Simply supported beam with an eccentric load W
16-15. Non-prismatic beams
16-16. Macaulay’s method
16-17. Variable loading on a beam of uniform section
16-18. Closing
Examples XVI

Chapter 17 DEFLECTIONS II
17-1. Moment area method
17-2. Method of elastic weights
17-3. Conjugate beam method
17-4. Impact loading on beams
17-5. Deflection by strain energy
17-6. Beams of variable section
17-7. Graphical methods
Examples XVII

Chapter 18 FIXED BEAMS
18-1. Introductory
Indeterminate Structures
18-2. Determinateness of the structure
18-3. Use of indeterminate structures
18-4. Methods of analysis
Fixed Beams
18-5. Fixed, built in, restrained or encastré beams
18-6. Method of superposition
18-7. Double integration method
18-8. Solution by moment area method
18-9. Sinking of support
18-10. Rotation of support
18-11. Review of deflection methods
18-12. Degree of restraint at supports for maximum bending moment to be as small as possible
18-13. Beams with related deflections
Examples XVIII

Chapter 19 CONTINUOUS BEAMS
19-1. Continuous beams
19-2. The three moment theorem
19-3. Support settlement
Examples XIX

Chapter 20 COMPOSITE BEAMS
20-1. Introductory
20-2. Flitched beams
20-3. Equivalent section: Transformed area method
20-4. Deflection of composite beams
Examples XX
Detailed Contents

Chapter 21 Reinforced Concrete Beams
- 21-1. Reinforced concrete
- 21-2. Compressive strength of concrete
- 21-3. Steel as reinforcement
- 21-4. Types of reinforcement
- 21-5. Mild steel bars
- 21-6. High yield strength deformed (HYSD) bars
- 21-7. Design of a beam
- 21-8. Classification of beams
- 21-10. Permissible stresses
- 21-11. Assumptions for flexure design
- 21-12. Derivation of formulae for balanced design
- 21-13. Transformed area method
- 21-14. Types of problems

Chapter 22 Direct and Bending Stresses
- 22-1. Introduction
- 22-2. Combined axial and flexural load
- 22-3. Biaxial loading
- 22-4. Eccentric loading
- 22-5. Limit of eccentricity
- 22-6. Double eccentricity
- 22-7. Wind pressure on walls and chimney shafts
- 22-8. Coefficient of wind-resistance
- 22-9. Water and earth pressure on walls

Chapter 23 Shafts and Springs in Torsion
- 23-1. Introduction
- 23-2. Assumptions
- 23-3. Derivation of torsion formulae
- 23-4. Power transmitted: design of shafts
- 23-5. Torque diagrams
- 23-6. Stepped shaft
- 23-7. Composite shafts and tapered shaft
- 23-8. Keys and couplings
- 23-9. Combined bending and torsion
- 23-10. Combined bending and torsion and axial thrust
- 23-11. Torsion resilience of shafts
- 23-12. Shafts of non-circular sections subjected to torsion
- 23-13. Closely coiled helical springs: Axial loading
- 23-14. Closely coiled helical springs: Axial moment
- 23-15. Open coiled helical springs

Chapter 24 Testing of Materials – II
- 24-1. Flexure tests
- 24-2. Important flexure tests
- 24-3. Shear tests
- 24-4. Hardness
- 24-5. Brinell hardness test
- 24-6. Rockwell hardness test
- 24-7. Impact tests
- 24-8. Fatigue
- 24-9. Stress spectrum
- 24-10. Fatigue tests
- 24-11. The S-N curve
- 24-12. Endurance limit or fatigue limit
- 24-13. Fatigue failure

Chapter 25 Columns and Struts of Uniform Section
- 25-1. Axial loading
- 25-2. Very long columns — Euler’s formula
- 25-3. Limitations of Euler’s formulae
- 25-4. Intermediate columns
- 25-5. Rankine’s formula
- 25-6. Design of struts and columns
- 25-7. Other empirical formulae
- 25-8. Long columns under eccentric loading
- 25-9. Prof. Perry’s formula
- 25-10. Initial curvature on long column: Axial loading
- 25-11. Perry-Robertson formula
- 25-12. B.I.S. formula
- 25-13. Struts with transverse loading

Chapter 26 Radial Pressure – Cylindrical and Spherical Shells
- 26-1. Thin seamless cylindrical shells
- 26-2. Riveted boiler shells
- 26-3. Thin spherical shell
- 26-4. Wire-bound thin pipes or shells
- 26-5. Thick cylinders: Lami’s formulae
- 26-6. Design of thick cylindrical shells
- 26-7. Compound cylinders
- 26-8. Shrink-fit allowance: Initial difference of radii at junction
- 26-9. Thick spherical shells

Chapter 27 Riveted and Bolted Joints
- 27-1. Introductory
- 27-2. Rivets and riveting
- 27-3. Bolts and bolting
- 27-4. Bearing and friction type connections
- 27-5. Types of riveted and bolted joints
- 27-6. Definitions
- 27-7. Possible ways of failure of bearing type connection
- 27-8. Strength of a bearing type connection
- 27-9. Fastener value
- 27-10. Design of a riveted/bolted joint
- 27-11. Riveted joints in boiler shells
- 27-12. Structural joints
- 27-14. Pitch of rivets in built-up girders
- 27-15. Eccentric loading on rivets

Chapter 28 Welded Joints
- 28-1. Introductory
- 28-2. Forms of welded joints
- 28-3. Strength of a welded joint
- 28-4. Eccentric loading on welded joints

Chapter 29 Shear Centre
- 29-1. Shear flow in thin-walled open sections
- 29-2. Shear centre

Chapter 30 Unsymmetrical Bending
- 30-1. Introductory
- 30-2. Unsymmetrical bending
- 30-3. Bending stress through product of inertia
- 30-4. The Z-polygon

Chapter 31 Bending Stresses in Curved Bars
- 31-1. Pure bending of curved bars
- 31-2. Stresses in beams of large initial curvature
- 31-3. Rectangular cross-section
- 31-4. Trapezoidal cross-section
- 31-5. Inverted T-section
- 31-6. I-section
- 31-7. Circular cross-section
- 31-8. Crane hooks
- 31-9. Stresses in curved bars of small initial curvature
- 31-10. Piston rings

Index