MACHINE DESIGN

[ENTIRELY IN SI UNITS]

By

Dr. N. C. Pandya, Dr. C. S. Shah

ABOUT THE BOOK

This textbook aims at presenting the fundamental principles of Mechanical Engineering Design. The fundamentals of theory and design are presented as lucidly as possible to enable the students in engineering institutions to get a clear grasp of the basic principles of the subject. It explains the general theory of mechanical engineering design and sets out problems for the students aimed at equipping them for design of machine parts with intelligence and understanding.

Throughout this book the chief aim has been to illustrate the subject matter fully with suitable diagrams and by direct treatment of the subject matter.

The book contains numerous examples carefully chosen from past examination papers of various Indian Universities.

The book is intended for Mechanical Engineering students preparing for degree examinations in engineering of almost all the Indian Universities, diploma examinations of various technical boards, certificate courses, examinations of A.M.I.E., U.P.S.C., G.A.T.E., I.E.S. and other similar competitive and professional Examinations. It should also prove of interest and of practical value to practising engineers.

CONTENT

1: MATERIALS OF CONSTRUCTION AND THEIR PROPERTIES
2: DESIGN CONSIDERATIONS IN MACHINE PARTS
3: CYLINDERS, TANKS AND PIPES
4: RIVETED JOINTS
5: BOLTS, NUTS AND SCREWS
6: COTTER AND KNUCKLE JOINTS
7: SHAFTS, KEYS AND COUPLINGS
8: SPRINGS
9: BEARINGS
10: STRUTS AND COLUMNS
11: POWER SCREWS
12: LEVERS
13: BRACKETS
14: BELTS, PULLEYS AND CHAIN DRIVES
15: FLYWHEELS
16: GEARS
17: WELDED CONNECTIONS
18: DESIGN OF MISCELLANEOUS MACHINE PARTS – I: ENGINES AND BOILERS
19: DESIGN OF MISCELLANEOUS MACHINE PARTS – II: BRAKES AND CLUTCHES
20: DESIGN PROJECTS
APPENDIX : I TO APPENDIX : XVII
INDEX

$325.00
Chapter 1 MATERIALS OF CONSTRUCTION AND THEIR PROPERTIES

1-1. Introduction
1-2. Choice of material
1-3. Materials of construction
1-4. Structure of materials
1-5. Mechanical properties of materials of construction
1-6. Determination of mechanical properties
1-7. Fabrication characteristics and processes of fabrication
1-8. Ferrous metals — Cast iron, wrought iron and steel
1-9. Non-ferrous metals and alloys
1-10. Available sizes
1-11. Accuracy
1-12. Finishing processes
1-13. Non-metallic materials
1-14. Plastics
1-15. Composite materials
1-16. Improvements in properties of materials

Examples I

Chapter 2 DESIGN CONSIDERATIONS IN MACHINE PARTS

2-1. Loads
2-2. Stress
2-3. Strain
2-4. Stress-Strain diagram — Modulus of elasticity
2-5. Poisson’s ratio
2-6. Modulus of rigidity
2-7. Bulk modulus
2-8. Basic requirements of machine elements
2-9. Factor of safety: Selection of allowable stresses
2-10. Procedure for designing a machine element
2-11. Tensile stress
2-12. Compressive stress
2-13. Shearing stress
2-14. Bearing pressure intensity
2-15. Bending (Flexure)
2-16. Shear stresses in a beam
2-17. Torsion
2-18. Eccentric loading
2-19. Combined stresses: Bending combined with direct load
2-20. Offset connecting links and C shaped frames
2-21. Shear stresses combined with tensile and compressive stresses
2-22. Theories of elastic failure
2-23. Designing for impact loads
2-24. Design of members subjected to impact torsion
2-25. Stress concentration
2-26. Notch sensitivity
2-27. Effect of repeated application of a load
2-28. Fluctuating stress for ductile materials
2-29. Cumulative damage in fatigue: (Miner’s equation)
2-30. Fatigue life determined by short-term testing
2-31. Light weight and minimum dimensions
2-32. Elastic matching
2-33. Temperature stresses

Examples II

Chapter 3 CYLINDERS, TANKS AND PIPES

3-1. Introduction
3-2. Types of vessels
3-3. Design of thin cylinders
3-4. Design of a thin spherical shell
3-5. Cylindrical shell with hemispherical ends
3-6. General theory of membrane stresses in vessels under internal pressure
3-7. Design of pipes
3-8. Design of thick cylinders
3-9. Design equation for thick cylinders

Examples III

Chapter 4 RIVETED JOINTS

4-1. Introduction
4-2. Rivets
4-3. Rivet heads
4-4. Types of riveted joints
4-5. Caulking and fullering
4-6. Design of a riveted joint for boiler construction
4-7. Efficiency of a riveted joint
4-8. Joints for storage tanks
4-9. Lozenge joint
4-10. Eccentric loads on riveted connections
4-11. Rules in designing riveted joints
4-12. Advantages of welding over riveting

Examples IV

Chapter 5 BOLTS, NUTS AND SCREWS

5-1. Introduction
5-2. Definitions
5-3. Forms of screw threads
5-4. Advantages of square threads over V threads
5-5. Screw fastenings
5-6. Locking devices for nuts
5-7. Washers
5-8. Eye bolt
5-9. Efficiency of threads
5-10. Stresses in screw fastenings
5-11. Initial stresses
5-12. Stresses due to external forces
5-13. Stresses due to combined load
5-14. Bolts of uniform strength
5-15. Screwed boiler stays
5-16. Bolts subjected to shear
5-17. Bolts under eccentric loading
5-18. Design of a nut
5-19. Power transmitting capacity of set screws

Examples V

Chapter 6 COTTER AND KNUCKLE JOINTS

(A) DESIGN OF COTTERED JOINTS

6-1. Introduction
6-2. Design of cottered joints
6-3. Gib and cotter
6-4. Connection of a piston rod to a crosshead
6-5. Cotter foundation bolts

(B) DESIGN OF A KNUCKLE JOINT

6-6. Introduction
6-7. Joint of suspension links
6-8. Design of a coupler or a turnbuckle

Examples VI

Chapter 7 SHAFTS, KEYS AND COUPLINGS

7-1. Introduction
7-2. Materials and design stresses
7-3. Design of axles
7-4. Design of shafts on the basis of strength
7-5. Design of shafts on the basis of rigidity
7-6. Design of hollow and non-circular shafts
7-7. Form of keys
7-8. Keys
7-9. Design of sunk keys
7-10. Effect of keyways in sunk keys

Examples VII
Chapter 15 FLYWHEELS
15-1. Introduction
15-2. Determination of mass of a flywheel for a given coefficient of fluctuation of speed
15-3. Flywheel for punches and shears
15-4. Engine flywheels
15-5. Flywheel for electric generators
15-6. Stresses in rim of flywheels
15-7. Design of a hub
15-8. Arms of the flywheel
Examples XV

Chapter 16 GEARS
16-1. Introduction
(A) DESIGN OF SPUR GEARS
16-2. General characteristics
16-3. Spur gear terminology
16-4. Gear tooth forms
16-5. Accuracy of gears
16-6. Materials
16-7. Allowable stresses
16-8. Design considerations
16-9. Strength of gear teeth — Lewis equation
16-10. Dynamic tooth load
16-11. Design for wear
16-12. Gear wheel proportions
16-13. Internal gears
16-14. Racks
(B) DESIGN OF HELICAL GEARS
16-15. Introduction
16-16. Proportions for helical gears
16-17. Design of helical gear teeth
16-18. Herringbone gears
16-19. Rating of machine cut spur and helical gears
(C) DESIGN OF BEVEL GEARS
16-20. Introduction
16-21. Definitions
16-22. Strength of bevel gear teeth
16-23. Constructional details
16-24. Bearing loads
(D) DESIGN OF WORM GEARS
16-24. Introduction
16-26. Worm gear nomenclature
16-27. Strength of worm gear teeth
16-28. Bearing loads on the shafts
Examples XVI

Chapter 17 WELDED CONNECTIONS
17-1. Introduction
17-2. Welding processes
17-3. Types of welded joints
17-4. Working stresses in welds
17-5. Strength of welds
17-6. Special cases of fillet welds
17-7. Eccentric loads on welded connections
17-8. Design procedure recommended by American Welding Society
17-9. Fillet welds under varying loads
Examples XVII

Chapter 18 DESIGN OF MISCELLANEOUS MACHINE PARTS—I ENGINES AND BOILERS
18-1. Design of flat plates
18-2. Design of a piston for I.C. Engines
18-3. Design of crossheads
18-4. Design of connecting rods
18-5. Design of crankshafts
18-6. Design of a spring-loaded Hartnell governor
18-7. Design of an eccentric
18-8. Compensating ring for a manhole
18-9. Design of safety valves for boilers
18-10. Design of a screw down steam stop valve
18-11. Design of cams (I.C. Engines)
18-12. Design of a valve gear for I.C. Engines
Examples XVIII

Chapter 19 DESIGN OF MISCELLANEOUS MACHINE PARTS—II BRAKES AND CLUTCHES
(A) HOISTING EQUIPMENTS
19-1. Introduction
19-2. Design of hoisting chains and drums
19-3. Design of a hoisting rope
19-4. Design of wire ropes
19-5. Stresses in curved beams
19-6. Design of a crane hook
(B) BRAKES
19-7. Introduction
19-8. Types of brakes
19-9. Design procedure for block brakes
19-10. Band brakes: Introduction
19-11. Design procedure for band brakes
(C) CLUTCHES
19-12. Introduction
19-13. Design procedure for friction clutches
Examples XIX

Chapter 20 DESIGN PROJECTS
20-1. Introduction

APPENDICES I TO XVII
APPENDIX I : International system of units (SI System)
APPENDIX II : Sizes of pulleys for flat and V-belts
APPENDIX III : Width of flat cast iron and mild steel pulleys
APPENDIX VII : Basic thicknesses of sheet and diameters of wire in millimetres
APPENDIX V : Properties of Ferrous Materials
APPENDIX VI : Properties of Plastics
APPENDIX VIII : Indian Standards referred in the text
APPENDIX IX : Preferred Numbers (Rounded values)
APPENDIX X : (a) Metric coarse threads
(b) Metric Fine threads
APPENDIX XI : Common sizes of transmission shafts
APPENDIX XII : Deflection formulas for machine parts
APPENDIX XIII : Properties of geometrical Sections
APPENDIX XIV : Imperial or Legal Standard Wire Gauge
APPENDIX XV : Load carrying capacity of V-belts
APPENDIX XVI : Service factors for belt drives
APPENDIX XVII : Worm data

Index