BRIDGE ENGINEERING

By
J. S. Alagia

ISBN : 9789380358420
Size : 135 mm x 210 mm
Binding : Half - cloth Hard-Bound
Pages : 204 + 18 = 222

ABOUT THE BOOK
This text-book aims at presenting the fundamental principles of Bridge Engineering. It is characterised by the clear, methodical and step-by-step treatment of the subject. Salient features of this book are; numerous diagrams, photographs, brief description and clear exposition. Typical questions follow each chapter.

Throughout this book the chief aim has been to illustrate the subject matter fully with suitable diagrams and by direct treatment of the subject matter.

The book is written entirely in metric system of units.

It is hoped that this revised edition will prove useful to students preparing for degree examinations in civil engineering of all the Indian Universities, Diploma Examinations of the various Technical Boards, Certificate Courses, and also Associate Membership Examinations of professional bodies. It should also prove of interest and of practical value to practising engineers.

CONTENT

<table>
<thead>
<tr>
<th>PART I : DESCRIPTION OF BRIDGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : GENERAL INTRODUCTION AND TYPES OF BRIDGES</td>
</tr>
<tr>
<td>2 : PERMANENT BIG BRIDGES [SUPERSTRUCTURES]</td>
</tr>
<tr>
<td>3 : PERMANENT BIG BRIDGES [SUBSTRUCTURES]</td>
</tr>
<tr>
<td>4 : PERMANENT SMALL BRIDGES</td>
</tr>
<tr>
<td>5 : TEMPORARY BRIDGES [TEMPORARY FIXED BRIDGES]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART II : DESIGN, CONSTRUCTION AND MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : CHOICE OF TYPE OF A BRIDGE</td>
</tr>
<tr>
<td>2 : GENERAL LAYOUT</td>
</tr>
<tr>
<td>3 : PERMANENT BIG BRIDGES [SUPERSTRUCTURES]</td>
</tr>
<tr>
<td>4 : PERMANENT BIG BRIDGES [SUBSTRUCTURES]</td>
</tr>
<tr>
<td>5 : PERMANENT SMALL BRIDGES AND TEMPORARY BRIDGES</td>
</tr>
<tr>
<td>6 : CONSTRUCTION AND MAINTENANCE</td>
</tr>
</tbody>
</table>

APPENDIX : BRIDGE ARCHITECTURE
INDEX
PART I: DESCRIPTION OF BRIDGES

Chapter 1: GENERAL INTRODUCTION AND TYPES OF BRIDGES

1. **Introduction**
2. **Development of bridges**
 1. Availability of materials
 2. Advent of new materials
 3. Influence of pre-existing forms
 4. Advances in theory and in scientific experimental research
 5. Advances in other branches of science
 6. Improvement of constructional methods
3. **Some definitions**
4. **Component parts of a bridge**
5. **Deck, through and semi-through bridges**
6. **Span**
7. **Waterway and afflux**
8. **Classification of bridges**
 1. **IA Permanent big bridges**
 2. **IB Permanent small bridges**
 3. **IIA Temporary fixed bridges**
 4. **IIB Movable bridges**

Chapter 2: PERMANENT BIG BRIDGES [SUPERSTRUCTURES]

1. **Girder bridges**
 1. **STEEL BRIDGES**
 1. **(i) Beam bridges**
 2. **(ii) Plate girder bridges**
 3. **(iii) Open web girder bridges or Truss bridges:**
 - Simply supported
 - Continuous, cantilever and balanced cantilever
 4. **(iv) Open web steel bridges or Truss bridges:**
 5. **(v) Combined usages of steel girder bridges**
 2. **R.C.C. GIRDER BRIDGES**
 3. **PRE-STRESSED CONCRETE GIRDER BRIDGES**
2. **Arch bridges**
 1. **MASONRY ARCH BRIDGES**
 2. **R.C.C. ARCH BRIDGES**
 1. **(i) Deck type R.C.C. arch bridges**
 2. **(ii) Through type R.C.C. arch bridges**
 3. **STEEL ARCH BRIDGES**
 1. **(i) Deck type steel arch bridges**
 2. **(ii) Through and semi-through steel arch bridges**
 4. **PRE-STRESSED CONCRETE ARCH BRIDGES**
3. **Suspension bridges**
4. **Rigid frame bridges**
 1. **R.C.C. RIGID FRAME BRIDGES**
 2. **STEEL RIGID FRAME BRIDGES**
5. **Expansion provisions in bridge floors**

Chapter 3: PERMANENT BIG BRIDGES [SUBSTRUCTURES]

1. **PIERS**
 1. **SOLID PIERS**
 1. **(i) Masonry piers**
 2. **(ii) R.C.C. piers**
 2. **OPEN PIERS**
 1. **(i) Cylindrical piers**
 2. **(ii) Column bents**
 3. **(iii) Pile bents**
 4. **(iv) Trestle bents**
 3. **Piers for arch bridges**
 4. **Piers for suspension bridges**
 5. **Piers for rigid frame bridges**
 6. **ABUTMENTS**
 7. **Butments for girder bridges and arch bridges**
 8. **Masonry abutments**

Chapter 4: PERMANENT SMALL BRIDGES

1. **Culverts**
 1. **Pipe culverts**
 2. **Box culverts**
 3. **Arch culverts**
 4. **Slab culverts**
 5. **Culverts with beams**
 6. **High level causeway**
 7. **Low level causeway**
 8. **Conditions to be satisfied to justify the construction of a causeway**
 9. **Data to collected for a causeway**

Chapter 5: TEMPORARY BRIDGES [TEMPORARY FIXED BRIDGES]

1. **Introductory**
2. **Materials and fastenings for temporary bridges**
3. **Causeways and metal dips**
4. **Wooden bridges**
 1. **Superstructure**
 2. **Substructure**
 3. **Suspension bridges**
 1. **(i) Ramp bridge**
 2. **(ii) Trestle suspension bridge**
 3. **(iii) Sling bridge**
 4. **Floating bridges**
 1. **(i) Boat bridge**
 2. **(ii) Pontoon bridges and raft bridges**
 5. **Movable bridges**
 1. **(i) Swing bridge**
 2. **(ii) Bascule bridge**
 3. **(iii) Traverser bridge**
 4. **(iv) Transporter bridge**
 5. **(v) Life bridge**
 6. **(vi) Flying bridge**
 7. **(vii) Cut boat bridge**

PART II: DESIGN, CONSTRUCTION AND MAINTENANCE OF BRIDGES

Chapter 1: CHOICE OF TYPE OF A BRIDGE

1. **Introductory**
2. **Deck and through bridges**
3. **Submersible and non-submersible bridges**
4. **Temporary and permanent bridges**
 1. **PERMANENT BIG BRIDGES**
 1. **– CHOICE OF SUPERSTRUCTURES**
 2. **– CHOICE OF SUBSTRUCTURES**
 2. **Choice between main types**
 3. **Girder bridges**
 1. **Steel girder bridges**
 2. **R.C.C. girder bridges**
 3. **Pre-stressed concrete girder bridges**
 4. **Arch bridges**
 4. **Suspension bridges**
 5. **Rigid frame bridges**
 1. **PERMANENT BIG BRIDGES**
 2. **– CHOICE OF SUBSTRUCTURES**
Chapter 2: GENERAL LAYOUT
1 Site selection
2 Alignment
3 Waterway for average and big bridges
 Determining high floor discharge in case of non-submersible bridge and normal floor discharge in case of submersible bridge
 I Direct method
 II Indirect method
 Computing waterway area
4 Lineal waterway and afflux
5 Waterway for small bridges
6 Determining of spans
7 Economic span
8 Free board
9 Clearances
10 Depth of foundations

Questions

Chapter 3: PERMANENT BIG BRIDGES [SUPERSTRUCTURES]
1 Introductory
2 Layouts and approximate designs of some features of the superstructures
 Girder bridges
 Arch bridges
 Suspension bridges
 Rigid frame bridges
3 Forces acting on the superstructure and codes of practice

LOADING ON BRIDGES
 General
 I Buoyancy pressure
 II Centrifugal forces
 (1) Road bridges
 (2) Railway bridges
 III Dead load
 (1) Unwin’s formula
 (2) American formula for plate girders
 (3) American formula for trusses
 (4) R.C.C. arches
 (5) R.C.C. slab bridges upto 6 m span
 (6) R.C.C. slab and T beam bridges
 IV Deformation stresses
 V Earth pressure
 VI Erection stresses
 VII Impact load
 For road bridges
 For railway bridges
 VIII Live load
 For road bridges
 For railway bridges
 IX Longitudinal forces
 For road bridges
 For railway bridges
X Secondary stresses
XI Seismic load
XII Temperature variation forces
XIII Water pressure
XIV Wind load
 For road bridges
 For railway bridges

Chapter 4: PERMANENT BIG BRIDGES [SUBSTRUCTURES]
1 Introduction
2 Practical considerations and usual practices
 Piers
 Abutments
 Approaches
 Wing walls
 Foundations
3 Forces acting on piers, abutments and wing walls
 Dead load
 Live load and impact
 Wind load
 Longitudinal and lateral loads
 Water pressure
 Buoyancy and uplift
 Earth pressure and live load surcharges
 Seismic load
4 Modes of failure and conditions of stability
5 Design of foundations
6 Materials used for abutments, piers and wing walls

Questions

Chapter 5: PERMANENT SMALL BRIDGES AND TEMPORARY BRIDGES
1 Introduction
2 Culverts
3 Design of causeways
4 Wooden bridges
5 Suspension bridges
6 Floating bridges
7 Movable bridges

Questions

Chapter 6: CONSTRUCTION AND MAINTENANCE
1 Introductory
2 Steel girder bridges
 Fabrication
 Erection
3 R.C.C. and pre-stressed concrete girder bridges
4 Arch bridges
5 Suspension bridges
6 Rigid frame bridges
7 Piers and abutments for big bridges
8 Approaches and foundations
9 Permanent small bridges
10 Temporary bridges
 Wooden bridges
 Suspension bridges
 Movable bridges
 Testing of bridges
11 Rating of existing bridges
12 Testing of a girder bridge
13 Post ing of bridges
 Load limit postings
 Speed postings
14 Strengthening of bridge superstructure
 R.C.C. slab bridges
 R.C.C. beam and slab bridges
 Masonry arches
 Steel bridges
 Continuous bridges
 Suspension bridges
 Widening the bridges
15 Maintenance of bridges

Questions

Appendix: BRIDGE ARCHITECTURE

Introduction
Function, fitness and truth
Unity
Definition
Infection
Line
Mass
Conclusion

Index