ABOUT THE BOOK

In this text-book, the approach is to study systematically the laws of Mechanics and their application to engineering problems. The outline of the book is:

Chapters 1 and 2 discuss Introduction of Mechanics; Fundamental Concepts and Principles; Scalars, Vectors and Tensors; SI Units, Vector Algebra, etc.

Chapter 3 to 10 consist the study of Mechanics of Rigid Bodies: Fundamentals of Statics, Forces and Force systems such as coplanar concurrent force systems; Moments; Parallel Forces and Couples; Spatial forces; Reactions etc, deals in Properties of Lines, Areas and Solids.

Chapter 11 deals in Properties of Lines, Areas and Solids.

Chapter 12 and 13 discuss application of the connected bodies viz., trusses, frames and mechanisms.

Chapter 14 gives problems of statics in Graphics Statics

Chapter 15 and 16Moments of Inertia of Areas and Masses; Friction respectively.

Chapters 17 to 21 include the study of Dynamics and Kinematics such as — the motion of the particles, etc.

Chapters 22 to 29 deal with topics on Kinetics of Particles such as Laws of Motion; Work and Energy; Impulse and Momentum. Special Topics such as Central Force Motion and Collisions; Kinetics of Systems of Particles, Kinetics of Rigid Bodies; Motion of Vehicles are also covered.

Chapters 30 to 38 deal with topics such as Balancing and Rotating Masses; Virtual Work; The Catenary; Belt and Rope Drive; Toothed Gearing; Lifting Machine; Mechanical Vibration; Hydrostatics and Impact of Jets.

This book is now contains:
* 904 Neatly drawn figures; * 56 Useful tables ;* 453 Solved examples; * 670 Unsolved examples at the end of chapters.

It is hoped that this edition should prove extremely useful to students of Engineering reading for Degree Examinations of all the Universities of India, Diploma Examinations conducted by various Boards of Technical Education, Certificate Courses, as well as for the U.P.S.C., G.A.T.E., A.M.I.E., I.E.S. and other similar competitive and professional examinations. It should also prove of great interest and practical use to the practising engineers.

WORKED EXAMPLES OF APPLIED MECHANICS

By Dr. H. J. Shah

651 Solutions of the unsolved examples given at the end of all 38 chapters from the text book “APPLIED MECHANICS” with 480 neat and self-explanatory drawings.

Also available

Also available
Chapter 1 INTRODUCTION
1-1. Mechanics
1-2. Fundamental concepts
1-3. Scalars, vectors and tensors
1-4. Fundamental principles
1-5. System of units: SI units
1-6. Using SI units
Questions I

Chapter 2 VECTORS
2-1. Vectors
2-2. Basic operations with vectors
2-3. Components, unit vectors and position vector
2-4. Vector algebra: Dot product
2-5. Vector algebra: Cross product
2-6. Triple product of vectors
Exercise II

Chapter 3 COPLANAR CONCURRENT FORCES
3-1. Forces and force systems
3-2. Principle of transmissibility
3-3. Resultant of a force system
3-4. Resultant of two coplanar concurrent forces
3-5. Resultant of several coplanar forces acting at a point: Law of polygon of forces
3-6. Resolution of a force
3-7. Resultant of a coplanar concurrent force system: Resolution method
Examples III

Chapter 4 MOMENTS
4-1. Moment of a force
4-2. Principle of moments: Varignon’s theorem
4-3. Coplanar applications
4-4. Levers
4-5. A simple pulley
Examples IV

Chapter 5 PARALLEL FORCES AND COUPLES
5-1. Parallel force system
5-2. Couples
5-3. Equivalent couples
5-4. Addition of couples
5-5. Operations with couples
5-6. Equivalent systems of forces
5-7. Equipollent systems of vectors
Examples V

Chapter 6 RESULTANT OF COPLANAR FORCE SYSTEMS
6-1. Introduction
6-2. Resultant of parallel force system
6-3. Centre of parallel forces
6-4. Resultant of a general coplanar force system
6-5. Concentrated and distributed loads
Examples VI

Chapter 7 SPATIAL FORCES
7-1. Concurrent forces in space
7-2. Moment of a force
7-3. Resultant of spatial force system
7-4. Wrench resultant
Examples VII

Chapter 8 EQUILIBRIUM OF COPLANAR FORCE SYSTEMS
8-1. Equilibrium
8-2. Equilibrium of a particle
8-3. Resultant and equilibrant
8-4. Principle of action and reaction
8-5. Free body and free body diagram
8-6. Tensions of strings
8-7. Equilibrium of three forces acting on a particle: Lami’s theorem
8-8. Equilibrium of a particle under three forces acting on it
8-9. External and internal forces
8-10. Tension and compression
8-11. Connected bodies
8-12. Equilibrium of a rigid body
8-13. Conditions of equilibrium for a system of coplanar forces acting on a body
8-14. Types of supports
8-15. Solution of problems
Examples VIII

Chapter 9 REACTIONS
9-1. Axial and transverse forces
9-2. Structural members
9-3. Types of beams
9-4. Reactions by proportions
9-5. Reactions by equations of statics: Principle of super-position
9-6. Determine and indeterminate beams/structures
Examples IX

Chapter 10 EQUILIBRIUM OF SPATIAL FORCE SYSTEMS
10-1. Equilibrium of spatial force systems
Examples X

Chapter 11 PROPERTIES OF LINES, AREAS AND SOLIDS
11-1. Introductory
11-2. Centre of gravity
11-3. Centre of mass
11-4. Centroids
11-5. First moment of an element of line and area
11-6. First moment of a line segment and a finite area
11-7. Centroids of lines and areas
11-8. Centroids of symmetrical lines and areas
11-9. Centroids by integration
11-10. Summary of centroids of common figures
11-11. Centroids of composite lines and areas
11-12. Theorems of Pappus — Guldinus
11-13. Centroid of volumes
Examples XI

Chapter 12 TRUSSES
12-1. Engineering applications of connected bodies
12-2. Introductory
12-3. Assumptions made in the analysis of a truss
12-4. Truss notations
12-5. Common types of trusses
12-6. Analysis of a truss
12-7. Method of joints
12-8. Method of sections
12-9. Determinateness of a truss
12-10. Truss with two hinges
12-11. Space trusses
Examples XII

Chapter 13 FRAMES AND MECHANISMS
13-1. Frames and mechanisms
Examples XIII

Chapter 14 GRAPHIC STATICS
14-1. Introductory
14-2. Basic concepts
14-3. Conditions of equilibrium of a point
14-4. Three force equilibrium of coplanar, non-concurrent, non-parallel forces
14-5. Resultant of non-concurrent, non-parallel forces: Funicular polygon
14-6. Resultant of parallel forces
14-7. Parallel forces: Centroid problems
14-8. Graphical conditions of rigid body equilibrium
14-9. Reactions of beams and trusses
14-10. Graphical methods applied to trusses
14-11. Force diagrams for individual joints of a truss
14-12. The Maxwell diagram
14-13. Method of substitution
Examples XIV
APPLIED MECHANICS

DETAILED CONTENTS

14-14. Truss with two hinges with inclined loads
 Examples XIV

Chapter 15 MOMENTS OF INERTIA
15-1. Introduction
 AREA MOMENT OF INERTIA
15-2. Definitions
15-3. Radius of gyration
15-4. Parallel axis theorem
15-5. Moment of inertia by integration
15-6. Moment of inertia of composite areas
15-7. Graphical method for first and second moments of a plane section about an axis in its plane
15-8. Product of inertia
 MOMENT OF INERTIA OF MASSES
 Examples XV

Chapter 16 FRICTION
16-1. Introduction
16-2. Types of friction
16-3. Characteristics of dry friction
16-4. Angle of friction: Cone of friction
16-5. Angle of repose
16-6. Types of problems
16-7. Equilibrium on a rough inclined plane
 APPLICATIONS OF FRICTION
16-8. The wedge
16-9. The screw
16-10. Screw-jack
16-11. Journal bearings, axle friction
16-12. Thrust bearings: Disc friction
16-13. Thrust bearing: Uniform wear
16-14. Friction plate clutches
16-15. Rolling resistance
 Examples XVI

Chapter 17 RECTILINEAR MOTION OF A PARTICLE
17-1. Motion of a particle
17-2. Speed
17-3. Velocity
 RECTILINEAR MOTION
17-4. Definitions
17-5. Motion under constant acceleration
17-6. Motion under gravity
 Examples XVII

Chapter 18 MOTION UNDER VARIABLE ACCELERATION
18-1. Motion under variable acceleration
18-2. Vector calculus
 Examples XVIII

Chapter 19 RELATIVE MOTION OF A PARTICLE
19-1. Relative motion of a particle
19-2. Motion of connected particles
 Examples XIX

Chapter 20 CURVILINEAR MOTION OF A PARTICLE
20-1. Introductory
20-2. Velocity, Acceleration and Hodograph
20-3. Rectangular components of curvilinear motion
20-4. Normal and tangential components: Intrinsic co-ordinates
20-5. Radial and transverse components: Cylindrical co-ordinates
20-6. Angular motion of a line
20-7. Circular motion of a particle
20-8. Simple Harmonic Motion

20-9. Projectiles: Motion in a vertical plane under gravity
20-10. Motion of a projectile on an inclined plane
 Examples XX

Chapter 21 KINEMATICS OF RIGID BODIES
21-1. Introduction
21-2. Translation
21-3. Fixed axis rotation
21-4. General plane motion
21-5. Absolute motion analysis
21-6. Relative motion analysis
21-7. Instantaneous centre: Centrodes
 Examples XXI

Chapter 22 KINEMATICS OF PARTICLES: LAWS OF MOTION
22-1. Introduction
22-2. Inertia and mass: Inertia
22-3. Newton’s laws of motion: First law
22-4. Newton’s second law
22-5. Inertial frame
22-6. Equations of motion
22-7. Constant force acting on a particle
22-8. Variable force acting on a particle
22-9. Motion of a lift
22-10. Motion on a rough inclined plane
22-11. Motion of connected bodies
22-12. D’Alembert’s principle: Dynamic equilibrium
22-13. Curvilinear motion
22-14. Circular motion
22-15. Newton’s law of gravitation
 Examples XXII

Chapter 23 KINEMATICS OF PARTICLES: WORK AND ENERGY
23-1. Introductory
 WORK AND ENERGY METHOD
23-2. Work done by a force
23-3. Standard cases
23-4. Power and efficiency
23-5. Energy
23-6. Conservative forces
23-7. Principle of conservation of energy
23-8. Total mechanical energy
23-9. Extrinsic forces
 Examples XXIII

Chapter 24 KINEMATICS OF PARTICLES: IMPULSE AND MOMENTUM
24-1. Linear momentum
24-2. Linear impulse
24-3. Variable force with time
24-4. Impulsive forces
24-5. Angular momentum
24-6. Angular impulse
 Examples XXIV

Chapter 25 CENTRAL FORCE MOTION
25-1. Introductory
25-2. Central force motion
25-3. Trajectory of a particle under a central force
25-4. Launching of a space vehicle
25-5. Escape velocity: Particle orbits
25-6. Periodic time of an orbit
25-7. Communication satellite
25-8. Kepler’s laws of planetary motion
 Examples XXV

Chapter 26 COLLISIONS
26-1. Collision of two bodies: Impact
26-2. Definitions
26-3. Phenomenon of impact
26-4. The general condition
26-5. Collision of perfectly elastic bodies
26-6. Inelastic collisions
 Examples XXVI
APPLIED MECHANICS
DETAILED CONTENTS

26-7. Collision of partially elastic bodies
26-8. Oblique impact on a smooth horizontal plane
26-9. Oblique impact of two smooth spheres
Examples XXVI

Chapter 27 KINETICS OF SYSTEMS OF PARTICLES
27-1. Introduction
27-2. Application of law of motion for system of particles
27-3. Principle of motion of mass centre
27-4. Work-energy
27-5. Linear and angular momentum of a system of particles
27-6. Principle of impulse and momentum for a system of particles
Examples XXVII

Chapter 28 KINETICS OF RIGID BODIES
28-1. Introduction
28-2. Translation
ROTATION
28-3. Rotational motion
28-4. Work done by a couple: Kinetic energy of rotation
28-5. Impulse and momentum
PLANE MOTION
28-6. Wheel rolling without slipping
SPECIAL TOPICS
28-7. Flywheels
28-8. Centre of Percussion
Examples XXVIII

Chapter 29 MOTION OF VEHICLES
29-1. Motion of vehicles
29-2. Tractive resistance
29-3. Tractive force
29-4. Driving torque
29-5. Maximum possible tractive effort
29-6. Power to drive a vehicle
29-7. A truck rolling down a rough inclined plane
29-8. Motion of a truck along level track
29-9. Motion of a truck going round a curve
29-10. Banking a curve: Super-elevation
Examples XXIX

Chapter 30 BALANCING OF ROTATING Masses
30-1. Static and Dynamic balance
30-2. Balancing of several masses in the same plane of revolution
30-3. Dynamical loads at bearings
30-4. Balancing of a mass by two masses in different planes of revolution
Examples XXX

Chapter 31 VIRTUAL WORK
31-1. Introductory
31-2. Principle of virtual work
Examples XXXI

Chapter 32 THE Catenary
32-1. The Catenary
32-2. The parabolic chain
32-3. The length of the cable
Examples XXXII

Chapter 33 BELT AND ROPE DRIVE
33-1. Belt drive
33-2. Velocity ratio
33-3. Compound belt drive
33-4. Length of belt: Open drive
33-5. Length of belt: Crossed drive
33-6. Transmission of power
33-7. Centrifugal tension
33-8. Optimum speed for maximum power
33-9. Rope drive
Examples XXXIII

Chapter 34 TOOTHED GEARING
34-1. Introduction
34-2. Friction wheels
34-3. Toothed wheels: Definitions
34-4. Motion transmitted by toothed gearing
34-5. Forms of wheel teeth
34-6. Trains of wheels
34-7. Design of wheel trains
34-8. Wheel train for a 12-hour clock
34-9. Screw-cutting Lathe
34-10. Lathe back-gear for speed reduction
34-11. Three-speed gear-box of a motor car
34-12. Epicyclic gearing
34-13. Epicyclic trains with bevel wheels
34-14. Humphage's speed-reduction gear
34-15. The differential gear
34-16. Epicyclic gearing: alternate method
Examples XXXIV

Chapter 35 LIFTING MACHINES
35-1. Definitions
35-2. Basic machines
35-3. Differential wheel and axle
35-4. Differential pulley-block
35-5. Differential screw
35-6. Pulley-blocks
35-7. Lifting machines with toothed gearing
35-8. Worm gearing
35-9. Worm geared screw jack
35-10. Worm geared pulley block
35-11. Linear law of machines
35-12. Reversibility of a machine
35-13. Compound efficiency
Examples XXXV

Chapter 36 Mechanical Vibrations
36-1. Introduction
36-2. Classification of vibrations
36-3. Vibration parameters
36-4. Free undamped vibrations of a particle: Spring-mass system
36-5. Composite springs
36-6. Simple pendulum
36-7. Conical pendulum
36-8. Compound pendulum
Examples XXXVI

Chapter 37 HYDROSTATICS
37-1. Introductory: Fluids and liquids
37-2. Liquid pressure
37-3. Relation of pressure to depth in a liquid
37-4. Total thrust on a plane vertical area immersed in a liquid: Centre of Pressure
37-5. Total thrust on an inclined plane area immersed in a liquid
37-6. Floatation and Buoyancy
CONDITIONS OF EQUILIBRIUM OF A FLOATING BODY
37-7. Metacentre
37-8. Metacentic height
Examples XXXVII

Chapter 38 IMPACT OF JETS
38-1. Force exerted by a jet
38-2. Flat plates: Stationary as well as moving
38-3. Curved vanes
38-4. Pelton wheel: Turbines
Examples XXXVIII

Appendix 1 SELECTED MATHEMATICS
Appendix 2 OBJECTIVE QUESTIONS
INDEX